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Abstract—Mobile applications often predict the future to make cisions based on them, and they should use new information to
decisions in the present. Although such predictions are inherently reevaluate those decisions when necessary. In particaar,
uncertain, applications typically assume that they are completely sidering prediction uncertainty throughout the decisicocpss
accurate. This assumption can lead to incorrect decisions result- |ets applications properly consider the benefitreflundant
ing in unnecessary delays, wasted resources, or worse. strategies For example, a network selection application may

Instead, prediction error should be a fundamental considera- decide to send the same data redundantly on multiple neswork

tion in mobile systems. Applications should consider uncertainty L ) . . .
when weighing alternatives. When one alternative is not clearly when it is quite unsure which network will provide the best

superior to another, redundant strategies are often appropriate, '€Sponse time. By using the first data to arrive and discgrdin
resulting in much better performance at a very modest cost.  the second, the application gets the best performancebpessi
To illustrate these ideas, we describe and implement several and masks the effects of the predictor uncertainty.

methods for quantifying uncertainty in mobile environments. H the advant ined b lovi dund
Our system allows applications to explicitly weigh the tradeoff owever, the advantages gained by employing redundancy

between the performance gained via redundancy and the cost of COMe at a price. Sending data on two networks spends
extra energy and cellular data resources spent, tailoring decisions additional energy and potentially also spends cellulaa,dat
to their relative importance. We adapt two systems to use this Which for many users is limited to a fixed budget per month.
approach. Compared to both simple and adaptive strategies that From the perspective that resource conservation is of utmos
do not reflect prediction error, our library improves application  importance, redundancy may appear to be obvious follygsinc
performance by up to a factor of two. it always spends more resources than choosing the correct
|. INTRODUCTION strategy from the start. In the face of uncertainty, however
the correct strategy cannot always be known. Faced with
gncertainty, redundancy is a powerful mechanism that can
pend resources to purchase an improvement in performance
d a reduction in variability. In this way, redundancy ca&n b
en as an insurance policy against inaccurate predictions

Current mobile applications greatly overestimate theil-ab
ity to predict the future. Unlike the desktop environmen
many resources such as network availability, speed of m&two
power level can rapidly change due to the mobility nature Q
a mobile device. As circumstances change, mobile system
and applications adapt their behavior to take best advantagOf course, the use of redundancy as a hedge against
of their environments. These adaptive decisions are magdcertainty is not a new idea. It is used in several other
based orpredictionsof the future—network performance anddomains, including cloud servers [8] and route selection in
availability, expected computational loads, the presemmg wireless networks [1]. But such techniques have not been
capabilities of support services in the infrastructure, et applied throughout the systems and application stack in a

Unfortunately, these predictions are rarely certain, fieyt principled way, and we argue that mobile applications are
typically are used as if they were perfectly precise. Overcomissing substantial opportunities by not doing so.
fidence in prediction leads to incorrect adaptations ant los
opportunities, with consequences visible to the end user
terms of performance, power, and network costs. The probl
is that mobile applications typically modularize their théan
processes. First, an application calculates estimatectsdbr t
guantities such as bandwidth and application compute nee,
Even though the calculation of an estimated value takes i

- To explore these ideas, we have built an API that applica-
tl8ns can use to capture the uncertainty in their predistion
d incorporate it into their decision-making. Our framewo
implements three different methods for making decisiongevh

king predictor uncertainty into account, each with dfg
Zdeoffs. Each explicitly weighs the importance of perfor

account underlying distributions and measurement uriogyta ance and resource conservation, employing redundangy onl
ying when spending resources to purchase better performance is

the act of coIIapS|_ng the |nforn_1at|on into a §|ngle scaldueq likely to be cost-effective.
means that the inherent notion of error in the underlying
prediction is no longer captured. Second, applicationstuse ~ We have modified two applications to use our framework:
estimated values to choose the single option that maximizestwork selection and speech recognition. Our experinhenta
the difference between estimated benefit and estimated cossults show that there is significant benefit to be gained
As a result, even applications that select the optimalegjsat from redundancy when resources are sufficient to justify the
based on the predicted values are bound to make wradngdeoff. Compared to the both the simple strategies tlesteth
decisions at least some of the time—when reality does rapplications typically employ, as well as adaptive strigeg
match the predictions. that consider performance and cost without considering pre
We argue that the system and applications sheufalicitly dictor error, our framework improves application perfornoa

consider the uncertainty of their predictions when makieg dby up to a factor of two.



Il. EXAMPLE « There must be multiple strategies available to accomplish
some task. The strategies must not interfere with each
other, or such interference must be minimal.

« Future conditions on which strategy selection depends

(e.g., resource supply and demand) must be uncertain.

The benefits of better performance must outweigh the

We illustrate the ideas in this paper with a (very simple)
motivating example. Consider two servers that can exeaqute a
offloaded computation, with the following known distributis
on response time: server A takes 10 seconds half the time
and 20 seconds otherwise, and server B takes either 12 or 22
seconds with 50-50 probability. A system that only consder greater re;gurce cost. , ,
non-redundant solutions would calculate the expectecoresgp | "€se conditions are present in the cloud computing do-
time for each server (15 and 17 seconds, respectively) dRgins; for instance, Google systems mask variable componen
execute the computation on server A. But, since the respofi§aPonse time with hedged requests that initiate a redandan
times are independent, a system that considers redund§quest to a second server if the first server does not respond
strategies would calculate the expected fastest respimse tdUickly [8]. Redundancy is also used extensively in wirgles
from either server over the joint distributions as 13 sesonf€Works to compensate for unreliable links between notles [
(the fastest response with equal probability will be 10, D), where transmissions can be scheduled to minimize interfer-
or 20 seconds). ence. o . . o

Thus, if response time is the only consideration, redundant' '€S€_conditions are also present in mobile application
execution offers an expected benefit of 2 seconds over the t% 'gn. Specifically, non-interfering strategies eX'S.‘"'%“Work
non-redundant solution. However, redundancy uses adéitio>c'€ction (data may be sent over cellular and WiFi networks
resources. A principled approach would balance the exgexteSimultaneously) and in cyber foraging [9] (computation may
second benefit against the 2x server resource usage andachBSSconC“”emly executed on both a mobile computer and a

redundancy only if the value of improved latency exceeds thgmote Server). Compared to controlled data center environ
added resource cost ments, mobile environments are even more variable andgutur

In addition to improving expected response time, redusonditions are even more difficult to predict. While resource

dancy can help mask outlier behavior. Consider a distdbuti usage such as energy consumption is a very important concern

in which each server takes 10 seconds 99.9% of the time Aéﬂ grt\)/:/lii golrpsglgnvgc‘)ﬁgfr?&nsgcfﬁz ?;gs? gﬁ(rjamrgg?ésct?:;gr
100 seconds 0.1% of the time. Redundant execution redu % ’ y 9

the chances of the user experiencing the outlier behawaon fr prione with the fastest and most power-hungry processor).

0.1% to 0.0001%. Cloud systems currently apply this wel\l/;/r-gge, psaéig?ﬁ Iinthgﬁ Ier:(t:];nﬂselt?,c;}kre;yvgd2ngyelr?dglvr\11agrse
known principle to reduce tail latency [8]. g g ys sp

Einally. it is i tant t luate decisi based Gneray than if the application had just chosen the best mktwo
m_afy, : F 'mf’/\%.f‘n 'tc') ref?va uate eC|S|glnst ase d.O[B begin with. With perfect predictors, therefore, redumtda
new information. While it is often unreasonable to modifyy ,ioqies are never attractive. However, when predistioay
applications to provide explicit not|f|_cat|ons abou_t PESE,  he wrong, redundancy offers a performance benefit by giving
the absence of a response can provide valuable insight. applications an opportunity to hedge their bets. As the ex-

For instance, in the previous example, consider a Systy-.teq error increases, the performance benefit of redayidan
that made the decision to execute on one server (beca Broves.

the resource cost of redundant execution is high and outlier
behavior is unlikely). Assume that the computation has run IV. RELATED WORK

on that server for 11 seconds without a response. Now, thevany prior systems offload computation by migrating soft-
conditional probability distribution reveals that the ekfed ware components to remote servers. MAUI [7] partitions
completion time is an additional 89 seconds (the outligfpplications by running methods either locally or remotely
behavior is essentially certain in this simplified exampk) |t monitors method runtime, energy, and network conditions
new evaluation at this point reveals that starting a comjmrta and uses a global optimization to choose the partitionirag) th
on a second server is extremely likely to substantially ceduminimizes energy usage while keeping added latency under
response time. Thus, the negative information embodied B¥. It starts a new computation only if it detects a remote
a lack of response changes the decision about whetherffllure via timeout or dropped connection. CloneCloud [5]
not to employ redundancy. While timeouts or other failovesartitions applications by running threads either locadly
methods can provide an ad-hoc solution, considerationef femotely. It profiles applications offline to generate optim
conditional distributions provides a more general and ipeec partitions for various network, CPU, and energy conditions
method of handling unexpected delay. It measures these conditions when an application starts and
This paper advocates for tipgincipleduse of redundancy in chooses a partition via table lookup. Spectra [10] also runs
mobile applications. Too often, mobile systems eschewrredsoftware components either locally or remotely. It measure
dant strategies altogether by collapsing predicted Bistions supply and demand of CPU, network, energy, and storage at
into expected values (as in the first example), or they dantime. It calculates an expected value for each and uses th
not consider negative information (as in the final example)alues to decide which execution is best.
They therefore miss many opportunities to improve the userChroma [4] builds on Spectra and so uses the same
experience. techniques. It selects from a wider set of tactics (strategi
for partitioning and adapting the fidelity of applications)
Additionally, Chroma provides a mechanism for executing
Uncertainty and redundant strategies go hand-in-hand. Tieelundant computation on multiple servers; however, itsdoe
following conditions make redundancy attractive: not provide any policy for determining when redundancy

II1. UNCERTAINTY AND REDUNDANCY



should be employed. It is precisely such a policy that is trEmploy redundancy. We focus on the more general domain
focus of our work. Because Chroma does not implement sushmobile applications, and therefore offer more genergoal
a policy, it is similar to Spectra in that its decisions calesi rithms for quantifying prediction error and deciding when t
only the expected values of resource supply and demaedhploy redundant strategies.
Like Chroma, Slingshot [30] runs computation on multiple
servers, but it always instantiates redundant computation
when multiple servers are available. Thus, it does not useWe define apredictor to be a software component that
estimates and provides no policy for deciding whether or nestimates the future value of some quantity. For example,
to execute redundantly. commonly-used predictors in mobile computing estimate re-
Odessa [28] partitions stages in pipelined processing Bgurce supply, such as network bandwidth and latency réilu
executing each stage locally or remotely. It also varies dgtrobability, such as the chance of moving out of range of a
parallelism within a stage by adding or removing threads; dlotspot; and application or user behavior, such as the Hengt
threads of a stage run on a single computer. It makes suifha speech utterance.
decision by considering average processing time, CPU speed Applications use the output of predictors to select from
and network and bandwidth estimates. among differentstrategies which we define to be different
In summary, none of these prior solutions, nor any otheteans of accomplishing the same task. Strategies may be
offloading system of which we are aware, provide policies f&ron-redundant, such as sending data over a cellular or WiFi
considering when to execute redundantly. This is because rtwork, or redundant, such as sending the same data over
partition computation by running components either on theth types of network.
mobile device or on one or more servers. The two systemsAdding redundancy through the simultaneous execution
that execute redundantly on more than one server (Chrosfamultiple strategies tends to improve performance since
and Slingshot) provide a mechanism but no policy for degjdirthe application can use the result of the fastest strategy to
whether or not to execute redundantly. Thus, our work woufdbmplete. However, executing multiple strategies in@sas
improve all of these prior solutions by providing a policyath resource utilization since each new strategy consumesonietw
identifies when to employ redundancy. bandwidth, battery energy, etc. A redundant strategy shoul
Current mobile devices (e.g., iOS and Android) generallperefore be used when its expected benefits in terms of
use a trivial network selection policy: prefer WiFi overlogr improved performance exceed its expected costs in terms of
when available, unless the user has disabled WiFi. Thaglditional resource usage.
assumes WiFi will outperform cellular, which is not always Our library considers response time, energy consumption,
the case, especially when the user is moving and with modexnd cellular data usage in deciding which strategy to employ
cellular technology such as LTE. In order to compare quantities expressed in different pitits
Several prior systems send data concurrently over multigissumes that the current relative importance of the metrics
mobile networks. R-MTP [24], pTCP [14], and mTCP [34] atis specified through importance factors given by the user.
tempt to aggregate throughput by striping data across peilti For example, an importance factor of 0.0001 expresses the
networks. Note that striping ieot a redundant strategy; anyfollowing tradeoff: “I am willing to spend 10J or 10KB to
given unit of data is only sent on a single network. Stripingvoid 1 second of waiting.” We set these factors using thé goa
hinders low latency (the focus of our work) because thdirected adaptation of Odyssey [26] and IMP [12] in which
aggregate transmission experiences the latency of theestowieedback is used to raise or lower the importance of energy
network. Careful scheduling is required because a single nend data usage depending on how current usage relates to a
work estimated poorly is enough to stall the entire pipe whddgeted allocation.
ordered delivery is required; the designers of FatVAP esche Theweighted cosof a strategy is calculated by multiplying
striping within flows for exactly this reason [18]. Beforerouthe raw values for time, energy, and data usage with their
modifications, Intentional Networking [13] identified latgy- respective importance factors and summing the weighted val
sensitive traffic, but it sent such traffic over only a singlaes together. The best strategy is the one that has the lowest
network. Compared to these prior systems, our work is theeighted cost.
only one to explicitly consider redundantly sending the sam Note that when uncertainty is low and measurements are
piece of data over multiple networks to lower latency. probably accurate, a non-redundant strategy should be pre-
Network measurement is itself a well-studied area, eferred. This is because a decision that prefers one non-
compassing a variety of passive [17], [19], [20], [31] andedundant strategy over the others is likely to be correat. O
active [15], [16], [29] techniques. Most of these techngughe other hand, when prediction uncertainty is high, theeal
produce spot measurements of available bandwidth anctlatenf redundancy is greater because the likelihood of chodsiag
without providing a measure of the uncertainty in thoserong strategy increases. Hedging bets by choosing mailtipl
measurements. Jain and Dovrolis [16] characterize availalstrategies has a greater likelihood of significantly imgngv
bandwidth with a variation range, but offer no policy forngi application performance.
it to make decisions. There are many possible methods for incorporating un-
Redundancy is used in cloud computing [2], [8] to reduceertainty in decision-making, each of which has strengths
tail latency of compute jobs by sending them to multipland weaknesses. Since we were not sure which method
servers. Routing in ad-hoc sensor networks has long useduld work best in mobile computing, we implemented three
multiple redundant paths to provide fault tolerance in #eef methods in our library. The first two, which are described
of packet loss and node or path failure (e.g., [1]). Theserpriin Sections V-A and V-B, directly measure prediction error
systems use domain-specific algorithms to determine whenblyp comparing the measured value of a quantity with the

V. DESIGN



previously-predicted value. The sequence of error measuB: Probabilistic error bounds

ments collected over time is used to predict the uncertaintyq ;- second method measures and ages samples of predictor

gf fqturev rgeasulr%ments. In the (tjhirq method, bdescribed. &or in the same way as the brute force method, but it uses
ection V-C, our library measures decision error by COMMEAN o papjlistic bounds rather than calculations over an e

the strategy selected by the application with the stratégy disyrihution. Compared to the brute force method, use of

should have taken. probabilistic error bounds is less accurate but has sulbsitgn

So far, we have described only how our library makdswer computational costs.
an initial decision to employ a redundant or non-redundantPrevious work in network queuing uses Chebyshev bounds
strategy. Such decisions should be reevaluated when ni@wgive the worst-case error in packet delay prediction.[11]
information arrives in the form of updated predictions oWe initially tried this approach but found the resulting bds
even in the form of negative information such as the ladko loose to be useful. Instead, our library uses a Student’s
of response from a remote server. Section V-D describes hbwiistribution over the observed relative error samples to
our library performs reevaluation. construct a statisticaprediction interval (a = 0.05) on the
mean error value. Whereas c@nfidence intervatepresents
the likelihood that the true value of a sampled population
lies within a computed range, a prediction interval repnese

Our first method quantifies predictor error by measuring EE:,[ T;ilIgoogirfgstvigirzx;ftinr;plﬁn Oftéhﬁlgk%aggg;ggss Ik?ase d
over time and maintaining an empirical distribution. Foclea ge. - i pung .
new measurement, our library calculates relative error of© observations of quantities such as network bandwidth and

prediction as the measured value divided by the previoué ency, whose true values are neither known nor fixed, the

predicted value. A relative error greater than one ind#tat ediction interval fits our purpose more closely.

the last prediction underestimated the true value, theasusg';/he;mﬂlg %ﬂig@%ﬁggg; bgiligfsv’vgvgar:lasstedt?](gdbeog%vstgn
error sample less than one indicates that it overestimatesl. ‘ !

set of relative errors observed over time forms the empiric%II predictors to cglculate the resulting bounds on timeygy,
distribution of predictor error. a_\nd cellular data; for example, the minimum network transfe
time occurs at the upper bound of bandwidth and the lower
In order to incorporate the error distributions into a redumbound of latency. Then, if no two non-redundant strategies
dancy decision, our library calculates the expected cotimple have overlapping time bounds, this means that, with theerhos
time and resource costs for each non-redundant strategycesfidence, redundancy does not offer benefit. In this case, w
a weighted sum over the joint error distributions of theimply choose the best non-redundant strategy.
predictors. For each redundant strategy, the completioe ti  If any non-redundant strategies’ time bounds do overlap,
at each point in the joint distribution is the minimum of theve then evaluate redundancy as follows. First, we identiéy t
completion time of any component strategy and the resourgest non-redundant strategy. Next, we calculate the marimu
costs are the sum of the resource costs of all compongiissible benefit from redundancy and the minimum additional
strategies. These values are likewise calculated as vegightost, and we choose redundancy if the benefit exceeds the
sum over the joint error distributions. Our library comlsnecost. Since a redundant strategy’s completion time is the ti
the individual values to calculate a weighted cost for eadt its fastest non-redundant strategy, redundancy previde
strategy. most benefit when the supposedly best non-redundant strateg

A number of possible methods exist for storing distribusipn tUrns out to be worse than expected and the supposedly
e.g., storing all samples forever, binning samples, randoirse non-redundant strategy turns out to be better than
sampling, etc. We note that predictor error is constantfj<Pected. Therefore, the maximum benefit from redundancy
changing; e.g., a quantity such as network bandwidth that W the minimum time of the redundant strategy subtracted
unpredictable seconds ago may have since settled. Thus, g the maximum time of the best non-redundant strategy.
library ages samples using an exponential weighted moviggMilarly, the additional cost of redundancy is calculatsihg
average so that the most recent error samples are giveregreie bounds of the additional strategies used, not inclutieg
weight. Aging also limits the number of samples stored; old@€St non-redundant strategy.

samples are removed after they drop beyond a threshold Whe{gecausg the error bounds method captures the distribution
their impact on the calculation is negligible. of error with less precision than the empirical distributiof

. the brute force method, and because the computed bounds are
‘The expected advantage of the brute force method is sifgjrly |oose, the error bounds method tends to overestittate

plicity and high accuracy; the expected disadvantage i9tem penefit of redundancy. The choice to use the upper bound on

tational cost. For instance, with a Nexus One phone, de®siqequndancy benefit and the lower bound on redundancy cost

for the applications in Section VI-C can take hundreds @fisg piases this method towards redundancy.
milliseconds. Our library mitigates this cost by moving teru . L
C. Bayesian estimation

force calculations off the critical path. For instance, a-ne
work selection application can make an initial non-redumtda Our last method quantifies uncertainty by calculating the
decision about which network to use, then asynchronougigsterior distributionof the actual predicted quantities with
run the slower redundancy decision to decide whether ttoe predictor values asvidence This process is known as
use an additional network. Additionally, the predictoroerr Bayesian estimation. It centers around the Bayesian view of
distributions change slowly, so error calculations arehedc statistics and probability, which provides a way to forntela
and re-used for several decisions. sound beliefs about an environment given some prior beliefs

A. Brute force



and new evidence. Prior work applied this technique to coraums as before, and it uses the same method to decide whether
putation offload but only considered the bandwidth of orthe benefit of redundancy is worth the cost.
network and did not consider redundancy [32]. Our library ages samples so that older observations have
In our case, the prior beliefs are our historical measurésnedecreasing impact. In the Bayesian method, it accomplish th
of predicted quantities such as bandwidth and latency, lB@d by aging the bins in each prior distribution’s histogramcrea
new evidence is the most recent decision made by the libragy in the histogram is now a weight rather than a count. When
e.g., “based on the predicted bandwidth and latency, Wikinew sample is added to a bin, the weight for all other bins
is better than cellular.” From Bayes’ Theorem, thesterior in that distribution decreases.
distribution of bandwidth and latency is proportional t@th |t may at first appear that the Bayesian method is equivalent
product of theprior bandwidth and latency distributions andn performance to the brute force method, since it still pro-
the likelihood of the evidence (the predictors’ decision) giverjyces a joint distribution over all predictors. In practibew-

the prior observations: ever, the likelihood distribution is sparsely populatechen
. likelihood x prior our library calculates the weighted sum, it avoids inclgdin
posterior= " plevidence the portions of the joint prior distribution not included time

. ) o likelihood distribution, because it knows they are zerough
where p(evidence is a normalizing factor that ensures thajvhereas the the brute force method has complety") with
the posterior distribution is a PDF (that it sums to 1). m predictors having samples each, the Bayesian method has

~ It may not be immediately clear how the Bayesian formulgomplexity O(m x n), or the total number of samples across
tion incorporates therror of the predictors, as was explicitly all predictors.

done in the prior two methods. To clarify this, we draw an
analogy to a textbook example of Bayesian reasoning: a simpl. Reevaluation from new information
problem of weather forecasting, answering the questioi| “w
it rain tomorrow?” In this problem, the prior is the histac
frequency of rain, and the evidence is a forecast (a predicti
of “rain” or “no rain”). Since weather forecasting is impect,

a forecast will sometimes predict rain when none occurpé

. o . ; X Vent, such as not receiving a response from a remote server
and sometimes it will predict clear skies when rain OCCUrR isnin some time

This inaccuracy is captured in the likelihood measure, fwhic . . . .
answers the questions: “whendoesrain, how often does the OUr library reevaluates a decision by repeating the prior
forecast agree?” and “whendbesn’train, how often does the calculations using conditional probability distributefor the

. ' predictors, based on the new evidence. Regardless of the

forecast agree?: luati thod chosen, the lib trict e
The likelihood measure answers similar questions for ofiy2'uation method cnosen, e library Testricts constusra
only the portion of the distributions that fit within obged

library; e.g., “when bandwidths and latencies have beeh su@ only . . :
; ; e%ondmons. For instance, given that a remote operation has

hat WiFi w r, how n has WiFi n predi | .
that as better, how often has been predict lready taken at least seconds, our library, using the brute

to be better?” Thus, the Bayesian formulation captures tE bound hod id v th . f
accuracy of the predictors, but in a more abstract sense thafF€ OF €rror bounds metnod, considers only the portion o
e joint error distribution that agrees with a duration ¢f a

the previous methods: by measuring how the inaccuracytaffe . X .
the I?:orrectness of the r)ésulting de?:isions y eastx (e.g., the region of bandwidths and latencies that would
' Qause the operation to take at leasseconds). Similarly, if
t

The arrival of new information can change the decision
about which strategy to employ. New information may arise
from an explicit event such as association with a new access
oint. Alternatively, it may arise from the lack of an expatt

In order to compute posterior distributions, our librar e library is using the Bayesian approach, it only consider
keep empirical records of the information specified in Baye ; A ' .
b emp P Y e regions of the prior distribution that agree, which proeks

Theorem: the prior distributions, the likelihood of the pre o R

dictor decisions given the priors, and the normalizing dact@ conditional posterior distribution. - .

p(evidence, which in our case is the strategy frequency 1he notion of what information is sufficient to trigger

regardless of the priors. These values are binned and kepf%@’?'uatlon is application-specific, so our library attoan

histograms to reduce storage costs. applllc.anon to trigger a reeyaluanon whenever it obse[a{eg
Each time we obtain a new measurement, we check the peéfficient change in the environment. In the case of an eiplic

dictors’ decision (e.g., which network is begtist beforethe €vent, deciding to trigger reevaluation is straight-fomva

measurement was taken. We updateptevidencg histogram However, it can be challenging to determine when the lack

with the indicated strategy, and we update one histogram Gh information is sufficient to justify a reevaluation, sorou

the likelinood array, using the new measurements to chodé¥ary provides additional support for this case.

which histogram to update. Note that this is in keeping with On application request, the library will calculate the ftipg

the Bayesian formulation of the problem discussed abowgint” at which the conditional error distribution calctitans

we are tracking how often the predictors have agreed witll cause the decision to change. It does a binary search

the next observed measurements, for various values of theyer the range of a given predictor, noting the strategy ehos

measurements. at each point. The search terminates when the tipping point
Given the posterior distributions of predicted quantjtimsr is found within a specified granularity. Since the strategy

library calculates the expected benefit and cost of redurydarselection is cleanly separable from the details of how a oteth

in the same way as in the brute force method. That is, it erais implemented, this binary search works for all three mesho

over the joint prior distributions and uses the informatibat without modifications.

it has tracked to compute the posterior joint distributibthen Note that the binary search strategy assumes that only one

uses the joint posterior distribution to compute the wedght predicted value changes based on new information. More



Application — Library Library — Application

make_strategy(time_fn, energy_fn, data_fn, s_arg) — strategy time_fn(s_arg, c_arg) — double

make_redundant_strategy(strategy[]) — strategy energy_fn(s_arg, c_arg) — double
data_fn(s_arg, c_arg) — double

create_predictor () — predictor

get_predictor_value(predictor) — double

add_measurement (predictor, measurement, new_prediction)

set_predictor_bound(predictor, bound, {UPPER,LOWER})

clear_predictor_bounds(predictor)

register_strategies(strategy[], enum method) — evaluator

choose_strategy(evaluator, c_arg) — strategy

This table shows the API for incorporating uncertainty into application decisions.

TABLE I: Application programming interface

complex applications for which this assumption is not valigrediction algorithms that we drew from the literature.
may simply schedule periodic reevaluations instead. Network bandwidth and latency. The network predictor
implements a flop-flip filter [19] to smooth estimates of
_ V1. IMPLEMENTATION network quality. Separate latency and bandwidth estinates
A. Library calculated via linear interpolation over varying transsios

We built a library that makes it easy for mobile application§'ze_s' The pred|ctor_ prOVIdes separate estimates for each
to consider predictor error in their decisions. Table | siw 2vailable network (WiFi and cellular). .
API. An application first specifies the non-redundant sgiae _ \Network dwell time. This predictor estimates the time the
from which it will decide. Each specification includes sbgt- mobile computer will remain in range of the current WiFi
specific functions that calculate the time, battery eneagy] 2CC€SS point. It fits the dwell time to a Weibull distribution
data usage of executing the strategy given predicted gigsnti Vid maximum likelihood estimation using the methods re-
Next, the application creates redundant strategies; each sPorted by [21]. The effect is that it has low confidence in
strategy is composed of two or more non-redundant strategi® reliability of a newly-associated WiFi network, but the
that wiil be executed concurrently. Our library will calaté confidence increases over the time of association. It pesvid
the time and resource usage of the redundant strategies u§ifii-AP estimates given sufficient samples for the current AP
one of the three methods in the previous section. else, it provides a generic prediction. .

An application next specifies the predictors, each of which APPlication compute time. This predictor estimates the
is responsible for tracking a single quantity such as nekwolMe (o complete a application-specific computation using a
bandwidth or latency. It may specify any combination Oztipproach S'm"a_f to _that of Narayanan et al. [25]. It posits a
custom predictors or the generic predictors that we desénib Near relationship with computation parameters and peréo
the next section. Our library tracks the error in the predics. & 'égression to generate the best fit. This is application-
Thus, each time an application makes a new measuremépﬁc'f'cf so the application must specnfy the value of the
it passes the measurement, the previous prediction for {ig9ression parameters for each observation.
quantity, and the new prediction for the quantity to thediyr ~_ APPlication energy usage.This predictor uses the Pow-
In turn, when the library runs its evaluation method, it used Tutor models [33] to estimate energy usage as a function
its error-adjusted estimates when invoking the applicatio® communication and computation. Similar to the previous
supplied strategy functions, which those functions obtan Predictor, the amount of computation and communication is a
the predictor interface. linear fit over application-specified parameters.

The predictor interface also allows applications to bound. Applications
the distribution of possible values based on new infornmatio
For instance, if a cyber foraging application has not resiz
response in time, it sets a lower bound of on the response  Network selection allows data to be sent over either cellula
time. The library will use only the portion of the distriboti or WiFi, as conditions warrant. Prior work often focuses on
with values greater thar to estimate response time. throughput and either sends data over a single network at a

Finally, an application passes the list of strategies to otime or stripes data by sending different data over diffenet-
library and receives back aavaluator An evaluator is a works. Our work focuses on user-facing activities, so leyen
handle, which the application can ask our library to choog®t throughput, is the relevant metric. In such scenaribs, i
the best strategy. The evaluation method is specified whexay make sense to redundantly transmit the same data over
the evaluator is created, and the evaluator provides daeter multiple networks and use the first instance to arrive at the
for choosing a strategy and scheduling deferred reevaluatiremote endpoint.
The evaluator also takes responsibility for caching pnesfip We modify Intentional Networking [13] (though several
computed decisions and invalidating the cached decisiosstems provide similar multi-network functionality). Ou
when new measurements arrive. modified version estimates network bandwidth, latency,|ldwe
time, and energy usage for each available network using the
predictors described above. For each transmission, & o

We provide several generic and customizable predictdiwe library for a decision as to whether the transmissiomkho
for applications to use. We briefly describe here the specifie sent using WiFi, cellular, or both networks redundantly.

1) Network selection

B. Predictors



The decision of when to reevaluate is application-specific. VII. EVALUATION
Our Intentional Networking ap_pllcatlc_)n reevalt_lates m_;)lch A. Experimental Setup
of strategy whenever the mobile device associates with a new
network or a network it is currently using fails. In additighe 1) Testbed

strategy choice is reevaluated when a response is not eeceiv \we run all applications on the AT&T version of the Nexus
after a delay of two times the expected completion time. Thisne running Android 2.3.4. We modified Android to allow the
avoids the wasted time and resources of spurious retransmignyltaneous use of WiFi and cellular networks. To ensure
sions when networks are stable, but still allows for quickpeatable experiments, the phone connects to an isolated
recovery from real failures. The reevaluation is repeat&tye \wiFi access point and a private Cisco MicroCell that is
200ms until the decision changes or the transfer completggnnected to AT&T’s network. Since the MicroCell acts as
The effect of reevaluation is a graceful response to failare 5 minjature cellular tower, our evaluation captures thecs
which a redundant transfer is started on a second network@sihe cellular wireless medium on network bandwidth and
.th'e' Intentional Networking application loses confidencédtsn latency. We emulate network conditions by passing all taffi
initially chosen network. through a computer that inserts delays with the netem [23]
network emulator and throttles throughput using the Linux
N Advanced Routing and Traffic Control tools [22]. We run
2) Speech recognition servers for each application on a Dell Optiplex GX270 dgskto
with a 2.8 GHz Pentium 4 processor and 1GB DRAM.
Speech recognition is a classic application of cyber forag-We measure energy usage by applying PowerTutor's Nexus
ing [3], the offloading of computation from a mobile client tdone power model [33]. We measure cellular data usage by
a remote server. We modified the PocketSphinx [6] library t@ading the number of bytes sent and received through the
perform recognition on the mobile device, on a remote servéinux sysfs interface.
or concurrently at both locations. 2) Scenarios

This application uses the above predictors for network Performance, energy, and cellular data usage have varying
latency, bandwidth, and dwell time, as well as the predsctoimportance to different users. We capture this through the
for application compute time and energy usage. The regmessimportance factors described in Section V. Our experinienta
parameter for compute time and energy usage is the lengésults are thus given as a weighted cost that is derived from
of the spoken utterance. However, since recognition statsing these factors to equate the diverse metrics of tinegggn
immediately and proceeds in parallel with the speaking ef tltonsumption, and data usage. One can contextualize these
utterance, the precise length of the utterance to be spakeractors in order to give them concrete meaning; e.g., “I am
not known when the initial decision about where to executgilling to spend X Joules to save Y seconds of waiting.”
recognition is made. We evaluate our results in four different scenarios, each
of which reflects a different tradeoff between performance
interactive delay) and resource consumption (energy and

ta usage). The first is theo-cost scenario, in which

fformance is the only consideration (energy and dataeusag

e not considered). Table Il shows the time-energy triideo
f19the remaining three scenariobsw-cost, mid-cost, and
%).{gh—cost. In the low-cost scenario, a user is willing to
spend 100 Joules to save 1 second of waiting. With that amount

In our experience, the upload bandwidth of both 3G arff energy, the user could watch 36 seconds of streaming
LTE networks is too low for remote execution—it is faster andideo, or the user could leave the phone idle for an additiona
more energy-efficient to run recognition locally. Thus, ogen 37 minutes. Based on the average behavior (including both

recognition takes place only when WiFi is available. idle and usage periods) given by a recent study [27], this
would equate to 6 minutes of extended battery lifetime. & th

The speech application reevaluates decision in three .casgsi-cost scenario, 1 second of waiting equates to 3.6 seconds
First, a decision to execute locally is reevaluated if théoieo of video watching, 3.75 minutes of idle time, or 36 seconds
device associates with a new WiFi network (since remot# average usage. In theigh-cost scenario, 1 second of
recognition may now make sense). Note that if the loc@teractive delay purchases only 0.36 seconds of videdray
recognition is likely to complete soon, starting a remotgr 22.5 seconds of battery lifetime on a completely idle ghon
recognition may not make sense even if network quality fhis already seems like a very poor tradeoff, so we did not
good. Second, the utterance may be significantly longer thiaRestigate higher cost scenarios.
predicted. The application uses the library’s binary dearc Similarly, in the low-cost scenario, 1 second of waiting
feature to precalculate the tipping point for utterancee sizime equates to saving 100 KB of data usage. Inithé-cost

and changes its recognition strategy if the tipping point ind high-cost scenarios, 1 second of waiting equates to
reached (e.g., by starting a redundant remote executioD).KB and 1 KB of data, respectively.

Finally, the application also uses the binary search featur
to calculate a tipping point in case remote recognition $ake
longer than expected. This is the point at which a redundantWe use trace-driven emulation to provide experimental
local recognition is started. repeatability and allow for meaningful comparison between

Therefore, this application also uses an applicationifipec
predictor to estimate the length of the utterance using t
utterance lengths that have been observed in the past.
output of this predictor is used to compute recognition ti
(measured from the point when the user finishes speaki
to the time the recognized text is displayed) and ener
(measured over the entire recognition).

3) Trace-driven evaluation



Scenario WiFi WiFi 3G Bandwidth (Kbps)
Coverage| session length Downlink Uplink
Median Max | Median Max | Median Max
Walking 69% 41 sec 5 min 137 737 48 454
Driving 27% 7 sec 2 min 368 1200 40 74

TABLE IlI: Details of the network traces used for evaluation

Battery life reduction o Cellular-only o Adaptive
Expected | Low-cost | Mid-cost | High-cost =@ WiFi-preferred O With library
Usage | battery life (100J) (10J) 1J) =
Idle 125 hours | 37.5 min | 3.75 min | 22.5 sec 25 " 2 2 2
Average | 20 hours 6 min 36 sec 3.6 sec g gE
Heavy 2 hours 36 sec 3.6 sec 0.36 sec 5 ég.§
£ 258
This figure shows the approximate battery life impact of spend- 3 §§§
ing various amounts of energy to save 1 second of delay in s 1 1 B 1
different evaluation scenarios. 3
ey
=
TABLE llI: Performance-energy tradeoff in various scenari 2 0 0 0 0
0.0 0.00001 0.0001 0.001
(a) No cost (b) Low cost  (c) Mid cost (d) High cost

strategies. We gathered these traces by continuously miegisu
the bandwidth and latency via active probing to a server at Fig. 1. Network selection, walking trace

the University of Michigan. We use two traces that illustrat

different mobility scenarios: a walking trace gathered am o

institution’s campus, and a vehicular networking traceduse the mean of 5 runs; error bars are 95% confidence intervals.
the evaluation of Intentional Networking [13]. The veh@ul Application performance is the time the user spends waiting
trace illustrates a highly-mobile scenario with challewpi for a response to each request. We first discuss the results fo
network dynamics. The walking-trace has longer associatiothe brute force method, and later compare the three evatuati
with WiFi access points and better overall connectivity: Tanethods.

ble Il details the network characteristics for the two tsace Figure 1 shows weighted cost results for the walking trace,

When running benchmarks, we replay the traces on thermalized to the weighted cost of the cellular-only sggte
emulation computer, which throttles bandwidth and delaygedundancy provides the most benefit in #he-cost sce-
packets for each network according to the conditions oleskrvnario, when performance is of utmost importance. Compared
When no WiFi or cellular coverage is observed in a trace a cellular-only strategy, the user spends 24% less time
the throttling computer drops the connection. The Androigaiting when redundancy is employed. The reduction in
OS typically discovers the network disconnection after-sewaiting time due to redundancy is greater than a factor of
eral seconds. Since the collected traces are longer than g compared to both the WiFi-preferred and the adaptive
experiments, we use only the first portion of each trace. strategies.

B. Results It may seem surprising that the slower cellular-only sggte
provides better performance than the WiFi-preferred exat
that mobile devices commonly employ. The impact of WiFi

To evaluate the effectiveness of redundancy in netwof&ilure detection delay accounts for this gap; even though i
selection for small, interactive transfers, we constrdiee ex- often provides better performance, WiFi is less reliablemh
periment in which the application executes a series of retguethe user is moving. A few long delays due to failure detection
response exchanges using Intentional Networking. These @8d failover when the mobile device moves out of range of an
quests and responses are of random sizes, normally distlibiaccess point dwarf the performance difference betweeunlaell
about 1 KB and 4 KB, respectively. The application pauses banad WiFi.
tween requests for a think time uniformly distributed betwe The low-cost scenario shows similar results to the
10 and 30 seconds. no-cost scenario. However, since energy and cellular data

We compare the results using our library to two simplsow have non-zero weight, the WiFi-preferred and adaptive
strategies: only use cellular, or use WiFi when availabld amon-redundant strategies show improved results. Ourriibra
fall back to cellular when it is not. WiFi-preferred is effaely provides an improvement of 21% over cellular-only and 44%
the strategy currently employed by Android and iOS. over WiFi-preferred and adaptive strategy.

For comparison, we also built an adaptive strategy that usesThe utility of redundancy drops as resource conservation
the same cost weights and formulas as our library to cakulddecomes more important. In theid-cost scenario, the
the time, energy, and data cost in order to select eitheulaell strategies that prefer to send less cellular data have wegro
or WiFi (when available). This is a standard adaptive stpateconsiderably. Our library’s redundant strategies arevedgmt
that treats predictions as oracles and does not incorporafiéhin experimental error to the best non-redundant sjsate
uncertainty. It also does not reevaluate its decisionscbase (WiFi-preferred). However, for the brute force and Baymsia
new information. methods, both the average and the variance are still lovaer th

Each experiment runs for 20 minutes. We report the totdliFi-preferred, due to redundancy reducing the effect ef th
weighted cost over this 20-minute interval. All results areutliers caused by WiFi failover delay. This contributesato

1) Network selection



H i @ Local-only O Adaptive
less variable user experience. @ Remote-preferred O With library

In the high-cost scenario, the brute force and Bayesian ;. 20 20 20
strategies are equivalent within experimental error toltest ﬁ
non-redundant strategy (WiFi-preferred). Thus, our fiprag 15 15 15 15
achieves benefit from redundancy when it is available asd
correctly chooses to avoid redundancy when it is not helpf *° 10 10 10

Note that since the cellular-only strategy never uses VéiFig 0s H‘H 0s Hﬂ 0s "m
user could potentially achieve slightly better energy eshg 2 rm ’Tﬂ
disabling WiFi. However, the energy savings from doing s& oo 0 0.0 0.0
are minimal (1% reduction in weighted cost in thew-cost 0.0 0.00001 0.0001 0.001
scenario to 4% in théigh-cost scenario). Any potential (a) No cost (b) Low cost  (c) Mid cost (d) High cost
gains are therefore dwarfed by the poor performance of
the cellular-only strategy. Further, the user would lose th

opportunity to employ WiFi when it is best (as it is in the

Error bounds

Brute-force
Bayesian

—.

Fig. 2: Speech recognition, walking trace

A H = Local-only o Adaptive
hlgh cost scenarlo) = Remote-preferred O With library
We also ran our experiment with the driving trace. Unlikg 20 2.0 2.0 20
the walking trace, opportunlstlc WiFi provides little béihe
15 1.5 1.5

because most sessions are short and unreliable. Thuslacell
only is best in all scenarios.

t (nognalize!

Error bounds

Brute-force
Bayesian

The unshaded bars in Figures 1 compare the relatﬁe Ho Ho o o
weighted cost realized by the three redundancy evaluat@nos, 05 05 05
methods. The results are mixed when comparing our thrge
methods. The Bayesian method is often best in higher cgsto.0 0 0.0 0.0
scenarios and the brute-force method is often best in lower 00 000001 00001 0.001
cost scenarios. The brute force method has higher computa-(&) No cost (b) Low cost  (c) Mid cost (d) High cost
tional complexity, which may result in higher weighted cost Fig. 3: Speech recognition, server load trace

The Bayesian method incorrectly sends some transfers non-
redundantly in the lower cost scenarios because it is less

accurate than the brute-force method. In the no-cost scenario, redundant strategies are generally
The error bounds method performs the poorest in genefigst, with performance improvement of 23-35% over the
It spends resources more readily, resulting in higher weiyjh remote-preferred and adaptive non-redundant strategies,
cost in the scenarios where resource conservation is Mgtprovement of more than a factor of two over the local-only
important. Since the bounds are loose, the method is prosiategy. The exception is the Bayesian method, which shows
to having an inflated view of predictor uncertainty and thusigh variance and thus is equivalent within error to the remo
naturally tends more towards redundancy. preferred and adaptive non-redundant strategies.
In the high-cost scenario, the remote-preferred strategy
dominates due to its reduced energy usage, and executing a
To evaluate the effectiveness of redundancy in a spedobkal redundant recognition is not worth the cost. Our lipra
recognition application, we selected 20 utterances rangin correctly selects the non-redundant strategy in this saena
length from 1 to 8 seconds. We simulate a user speaking aNote that, as was the case in network selection, no single
the original sampling rate of 20 KB/sec, looping over thetrategy is always best, and our library reduces weightstl co
20 utterances at 30-second intervals until 20 minutes hawe up to a factor of two compared to the simple strategies in
elapsed. The performance metric is the recognition delay, stenarios where they are not best. Also, even though local-
the interval between the time when the user finishes speakingly is never the best strategy in any scenario, using local
and the time with the transcribed text is available. We repagxecution in addition to remote execution does provide fiene
the total weighted cost, which reflects only recognitionaglel in reducing the uncertainty of remote execution, as it ratég
and energy usage in these experiments because cellulsg ushg impact of failover delays.
is negligible. We also ran this application with the driving trace. Similar
The two non-redundant strategies are to execute locally tor the previous application, the poor network quality cause
to prefer remote recognition using only WiFi. We comparkcal recognition to always dominate remote recognitioor O
against an adaptive strategy that considers time and clilstary achieves equivalent performance by correctly ctielg
but not predictor error. The redundant strategy execut#ls bthe local recognition in almost all cases.
locally and remotely. Finally, we ran the speech application in a scenario designe
Figure 2 shows the results for speech recognition on the show the impact of server load. In this experiment, a
walking trace. Note that the approximate break-even poihigh-quality WiFi connection is always available, but wedad
for redundancy is even higher in this application—that i® background load of concurrent clients requesting speech
redundancy still shows significant benefit in théd-cost recognition. Concurrent recognitions are performed byasep
scenario. Speech recognition generally takes longer tharrate event-based server processes that compete for the CPU
single small request/response exchange, so there is miaie deesource on the server. We vary the number of concurrent
to be saved for a given cost. requests according to a Poisson distribution, with theamer

2) Speech recognition



load increasing from 6 to 10 concurrent clients during thes
course of a 10 minute experiment. Since the network is stablg!
this experiment shows how our library reacts to changes in
recognition time due to server load and varying utterancel
lengths. 9

As Figure 3 shows, our library reduces recognition delay ilLl
theno-cost scenario by 23% compared to the local-only anidol
remote-only strategies. The adaptive non-redundantegtyat
also performs poorly in this scenario because it frequentiy
makes incorrect decision due to the difficulty in predicting
future server load. Our library achieves improved perfaraga ;5
by hedging its bets with redundancy. Our library achieves
similar benefit in thelow-cost andmid-cost scenarios by 13
choosing local recognition in periods where the server load
is likely to be high, remote recognition in period where th&4]
server load is likely to be low, and hedging its bets wheneher
is uncertainty about which strategy is best. In High-cost [15]
scenario, remote recognition is always superior. Howewer,
library sometimes hedges its bets via redundancy. Thexefasg
it outperforms the local-only strategy but under-perfortims
remote-only and adaptive strategies (it saves time but usges
more energy).

For this application, the error bounds method performs the
best on the network trace. The brute force and Bayesi@t
methods are generally equivalent within experimental rerro
and best on the server load trace. As with the previoli§]
application, the Bayesian method is prone to underestigatiyg
uncertainty and choosing redundancy less readily. Thesbrut
force method again has high computation complexity.

3) Discussion 221
Overall, we observe significant benefit from redundanciz3

user wait time is reduced by up to a factor of two. Further, oWy
simple back-of-the-envelope estimations suggest théitiuft
%

resources are available quite often for the average usemW
redundancy offers no benefit, our library usually approxesa
the best non-redundant strategy. The one exception is tte
high-cost scenario for speech recognition with CPU load:
in this case, the library overestimates the inherent vditiab [27]

and sometimes chooses redundancy inappropriately.
VIIl. CONCLUSION

[21]

[28]

Current mobile applications greatly overestimate theil-ab
ity to predict the future. Overconfidence leads to mistakes—{2
strategy that is optimal for the predicted values can sgll b
incorrect because the predictions on which the choice wag
based turn out to be wrong. We argue that applications shogjﬂ
consider uncertainty throughout the entire decision @sce
and we provide a library with three methods for doing so.
When uncertainty is correctly reflected in decisions, recdumnd
strategies that hedge against that uncertainty are oftsin be

[33]
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