
The future is cloudy:
Reflecting prediction error in mobile applications
Brett D. Higgins∧ Kyungmin Lee∗ Jason Flinn∗ T.J.Giuli† Brian Noble∗ Christopher Peplin†

Arbor Networks∧ University of Michigan∗ Ford Motor Company†

Abstract—Mobile applications often predict the future to make
decisions in the present. Although such predictions are inherently
uncertain, applications typically assume that they are completely
accurate. This assumption can lead to incorrect decisions result-
ing in unnecessary delays, wasted resources, or worse.

Instead, prediction error should be a fundamental considera-
tion in mobile systems. Applications should consider uncertainty
when weighing alternatives. When one alternative is not clearly
superior to another, redundant strategies are often appropriate,
resulting in much better performance at a very modest cost.

To illustrate these ideas, we describe and implement several
methods for quantifying uncertainty in mobile environments.
Our system allows applications to explicitly weigh the tradeoff
between the performance gained via redundancy and the cost of
extra energy and cellular data resources spent, tailoring decisions
to their relative importance. We adapt two systems to use this
approach. Compared to both simple and adaptive strategies that
do not reflect prediction error, our library improves application
performance by up to a factor of two.

I. I NTRODUCTION

Current mobile applications greatly overestimate their abil-
ity to predict the future. Unlike the desktop environment,
many resources such as network availability, speed of network,
power level can rapidly change due to the mobility nature of
a mobile device. As circumstances change, mobile systems
and applications adapt their behavior to take best advantage
of their environments. These adaptive decisions are made
based onpredictionsof the future—network performance and
availability, expected computational loads, the presenceand
capabilities of support services in the infrastructure, etc.

Unfortunately, these predictions are rarely certain, yet they
typically are used as if they were perfectly precise. Overcon-
fidence in prediction leads to incorrect adaptations and lost
opportunities, with consequences visible to the end user in
terms of performance, power, and network costs. The problem
is that mobile applications typically modularize their decision
processes. First, an application calculates estimated values for
quantities such as bandwidth and application compute needs.
Even though the calculation of an estimated value takes into
account underlying distributions and measurement uncertainty,
the act of collapsing the information into a single scalar value
means that the inherent notion of error in the underlying
prediction is no longer captured. Second, applications usethe
estimated values to choose the single option that maximizes
the difference between estimated benefit and estimated cost.
As a result, even applications that select the optimal strategy
based on the predicted values are bound to make wrong
decisions at least some of the time—when reality does not
match the predictions.

We argue that the system and applications shouldexplicitly
consider the uncertainty of their predictions when making de-

cisions based on them, and they should use new information to
reevaluate those decisions when necessary. In particular,con-
sidering prediction uncertainty throughout the decision process
lets applications properly consider the benefit ofredundant
strategies. For example, a network selection application may
decide to send the same data redundantly on multiple networks
when it is quite unsure which network will provide the best
response time. By using the first data to arrive and discarding
the second, the application gets the best performance possible
and masks the effects of the predictor uncertainty.

However, the advantages gained by employing redundancy
come at a price. Sending data on two networks spends
additional energy and potentially also spends cellular data,
which for many users is limited to a fixed budget per month.
From the perspective that resource conservation is of utmost
importance, redundancy may appear to be obvious folly, since
it always spends more resources than choosing the correct
strategy from the start. In the face of uncertainty, however,
the correct strategy cannot always be known. Faced with
uncertainty, redundancy is a powerful mechanism that can
spend resources to purchase an improvement in performance
and a reduction in variability. In this way, redundancy can be
seen as an insurance policy against inaccurate predictions.

Of course, the use of redundancy as a hedge against
uncertainty is not a new idea. It is used in several other
domains, including cloud servers [8] and route selection in
wireless networks [1]. But such techniques have not been
applied throughout the systems and application stack in a
principled way, and we argue that mobile applications are
missing substantial opportunities by not doing so.

To explore these ideas, we have built an API that applica-
tions can use to capture the uncertainty in their predictions
and incorporate it into their decision-making. Our framework
implements three different methods for making decisions while
taking predictor uncertainty into account, each with different
tradeoffs. Each explicitly weighs the importance of perfor-
mance and resource conservation, employing redundancy only
when spending resources to purchase better performance is
likely to be cost-effective.

We have modified two applications to use our framework:
network selection and speech recognition. Our experimental
results show that there is significant benefit to be gained
from redundancy when resources are sufficient to justify the
tradeoff. Compared to the both the simple strategies that these
applications typically employ, as well as adaptive strategies
that consider performance and cost without considering pre-
dictor error, our framework improves application performance
by up to a factor of two.



II. EXAMPLE

We illustrate the ideas in this paper with a (very simple)
motivating example. Consider two servers that can execute an
offloaded computation, with the following known distributions
on response time: server A takes 10 seconds half the time
and 20 seconds otherwise, and server B takes either 12 or 22
seconds with 50-50 probability. A system that only considers
non-redundant solutions would calculate the expected response
time for each server (15 and 17 seconds, respectively) and
execute the computation on server A. But, since the response
times are independent, a system that considers redundant
strategies would calculate the expected fastest response time
from either server over the joint distributions as 13 seconds
(the fastest response with equal probability will be 10, 10,12,
or 20 seconds).

Thus, if response time is the only consideration, redundant
execution offers an expected benefit of 2 seconds over the best
non-redundant solution. However, redundancy uses additional
resources. A principled approach would balance the expected 2
second benefit against the 2x server resource usage and choose
redundancy only if the value of improved latency exceeds the
added resource cost.

In addition to improving expected response time, redun-
dancy can help mask outlier behavior. Consider a distribution
in which each server takes 10 seconds 99.9% of the time and
100 seconds 0.1% of the time. Redundant execution reduces
the chances of the user experiencing the outlier behavior from
0.1% to 0.0001%. Cloud systems currently apply this well-
known principle to reduce tail latency [8].

Finally, it is important to reevaluate decisions based on
new information. While it is often unreasonable to modify
applications to provide explicit notifications about progress,
the absence of a response can provide valuable insight.

For instance, in the previous example, consider a system
that made the decision to execute on one server (because
the resource cost of redundant execution is high and outlier
behavior is unlikely). Assume that the computation has run
on that server for 11 seconds without a response. Now, the
conditional probability distribution reveals that the expected
completion time is an additional 89 seconds (the outlier
behavior is essentially certain in this simplified example). A
new evaluation at this point reveals that starting a computation
on a second server is extremely likely to substantially reduce
response time. Thus, the negative information embodied by
a lack of response changes the decision about whether or
not to employ redundancy. While timeouts or other failover
methods can provide an ad-hoc solution, consideration of the
conditional distributions provides a more general and precise
method of handling unexpected delay.

This paper advocates for theprincipleduse of redundancy in
mobile applications. Too often, mobile systems eschew redun-
dant strategies altogether by collapsing predicted distributions
into expected values (as in the first example), or they do
not consider negative information (as in the final example).
They therefore miss many opportunities to improve the user
experience.

III. U NCERTAINTY AND REDUNDANCY

Uncertainty and redundant strategies go hand-in-hand. The
following conditions make redundancy attractive:

• There must be multiple strategies available to accomplish
some task. The strategies must not interfere with each
other, or such interference must be minimal.

• Future conditions on which strategy selection depends
(e.g., resource supply and demand) must be uncertain.

• The benefits of better performance must outweigh the
greater resource cost.

These conditions are present in the cloud computing do-
mains; for instance, Google systems mask variable component
response time with hedged requests that initiate a redundant
request to a second server if the first server does not respond
quickly [8]. Redundancy is also used extensively in wireless
networks to compensate for unreliable links between nodes [1]
where transmissions can be scheduled to minimize interfer-
ence.

These conditions are also present in mobile application
design. Specifically, non-interfering strategies exist innetwork
selection (data may be sent over cellular and WiFi networks
simultaneously) and in cyber foraging [9] (computation may
be concurrently executed on both a mobile computer and a
remote server). Compared to controlled data center environ-
ments, mobile environments are even more variable and future
conditions are even more difficult to predict. While resource
usage such as energy consumption is a very important concern
in mobile computing, performance is also a paramount concern
(otherwise, users would not buy the latest and greatest smart-
phone with the fastest and most power-hungry processor).

The paradox is that, in hindsight, redundancy is always
wrong! Sending on an extra network always spends more
energy than if the application had just chosen the best network
to begin with. With perfect predictors, therefore, redundant
strategies are never attractive. However, when predictions may
be wrong, redundancy offers a performance benefit by giving
applications an opportunity to hedge their bets. As the ex-
pected error increases, the performance benefit of redundancy
improves.

IV. RELATED WORK

Many prior systems offload computation by migrating soft-
ware components to remote servers. MAUI [7] partitions
applications by running methods either locally or remotely.
It monitors method runtime, energy, and network conditions
and uses a global optimization to choose the partitioning that
minimizes energy usage while keeping added latency under
5%. It starts a new computation only if it detects a remote
failure via timeout or dropped connection. CloneCloud [5]
partitions applications by running threads either locallyor
remotely. It profiles applications offline to generate optimal
partitions for various network, CPU, and energy conditions.
It measures these conditions when an application starts and
chooses a partition via table lookup. Spectra [10] also runs
software components either locally or remotely. It measures
supply and demand of CPU, network, energy, and storage at
runtime. It calculates an expected value for each and uses those
values to decide which execution is best.

Chroma [4] builds on Spectra and so uses the same
techniques. It selects from a wider set of tactics (strategies
for partitioning and adapting the fidelity of applications).
Additionally, Chroma provides a mechanism for executing
redundant computation on multiple servers; however, it does
not provide any policy for determining when redundancy



should be employed. It is precisely such a policy that is the
focus of our work. Because Chroma does not implement such
a policy, it is similar to Spectra in that its decisions consider
only the expected values of resource supply and demand.
Like Chroma, Slingshot [30] runs computation on multiple
servers, but it always instantiates redundant computations
when multiple servers are available. Thus, it does not use
estimates and provides no policy for deciding whether or not
to execute redundantly.

Odessa [28] partitions stages in pipelined processing by
executing each stage locally or remotely. It also varies data
parallelism within a stage by adding or removing threads; all
threads of a stage run on a single computer. It makes such
decision by considering average processing time, CPU speeds,
and network and bandwidth estimates.

In summary, none of these prior solutions, nor any other
offloading system of which we are aware, provide policies for
considering when to execute redundantly. This is because all
partition computation by running components either on the
mobile device or on one or more servers. The two systems
that execute redundantly on more than one server (Chroma
and Slingshot) provide a mechanism but no policy for deciding
whether or not to execute redundantly. Thus, our work would
improve all of these prior solutions by providing a policy that
identifies when to employ redundancy.

Current mobile devices (e.g., iOS and Android) generally
use a trivial network selection policy: prefer WiFi over cellular
when available, unless the user has disabled WiFi. This
assumes WiFi will outperform cellular, which is not always
the case, especially when the user is moving and with modern
cellular technology such as LTE.

Several prior systems send data concurrently over multiple
mobile networks. R-MTP [24], pTCP [14], and mTCP [34] at-
tempt to aggregate throughput by striping data across multiple
networks. Note that striping isnot a redundant strategy; any
given unit of data is only sent on a single network. Striping
hinders low latency (the focus of our work) because the
aggregate transmission experiences the latency of the slowest
network. Careful scheduling is required because a single net-
work estimated poorly is enough to stall the entire pipe when
ordered delivery is required; the designers of FatVAP eschew
striping within flows for exactly this reason [18]. Before our
modifications, Intentional Networking [13] identified latency-
sensitive traffic, but it sent such traffic over only a single
network. Compared to these prior systems, our work is the
only one to explicitly consider redundantly sending the same
piece of data over multiple networks to lower latency.

Network measurement is itself a well-studied area, en-
compassing a variety of passive [17], [19], [20], [31] and
active [15], [16], [29] techniques. Most of these techniques
produce spot measurements of available bandwidth and latency
without providing a measure of the uncertainty in those
measurements. Jain and Dovrolis [16] characterize available
bandwidth with a variation range, but offer no policy for using
it to make decisions.

Redundancy is used in cloud computing [2], [8] to reduce
tail latency of compute jobs by sending them to multiple
servers. Routing in ad-hoc sensor networks has long used
multiple redundant paths to provide fault tolerance in the face
of packet loss and node or path failure (e.g., [1]). These prior
systems use domain-specific algorithms to determine when to

employ redundancy. We focus on the more general domain
of mobile applications, and therefore offer more generic algo-
rithms for quantifying prediction error and deciding when to
employ redundant strategies.

V. DESIGN

We define apredictor to be a software component that
estimates the future value of some quantity. For example,
commonly-used predictors in mobile computing estimate re-
source supply, such as network bandwidth and latency; failure
probability, such as the chance of moving out of range of a
hotspot; and application or user behavior, such as the length
of a speech utterance.

Applications use the output of predictors to select from
among differentstrategies, which we define to be different
means of accomplishing the same task. Strategies may be
non-redundant, such as sending data over a cellular or WiFi
network, or redundant, such as sending the same data over
both types of network.

Adding redundancy through the simultaneous execution
of multiple strategies tends to improve performance since
the application can use the result of the fastest strategy to
complete. However, executing multiple strategies increases
resource utilization since each new strategy consumes network
bandwidth, battery energy, etc. A redundant strategy should
therefore be used when its expected benefits in terms of
improved performance exceed its expected costs in terms of
additional resource usage.

Our library considers response time, energy consumption,
and cellular data usage in deciding which strategy to employ.
In order to compare quantities expressed in different units, it
assumes that the current relative importance of the metrics
is specified through importance factors given by the user.
For example, an importance factor of 0.0001 expresses the
following tradeoff: “I am willing to spend 10 J or 10 KB to
avoid 1 second of waiting.” We set these factors using the goal-
directed adaptation of Odyssey [26] and IMP [12] in which
feedback is used to raise or lower the importance of energy
and data usage depending on how current usage relates to a
budgeted allocation.

Theweighted costof a strategy is calculated by multiplying
the raw values for time, energy, and data usage with their
respective importance factors and summing the weighted val-
ues together. The best strategy is the one that has the lowest
weighted cost.

Note that when uncertainty is low and measurements are
probably accurate, a non-redundant strategy should be pre-
ferred. This is because a decision that prefers one non-
redundant strategy over the others is likely to be correct. On
the other hand, when prediction uncertainty is high, the value
of redundancy is greater because the likelihood of choosingthe
wrong strategy increases. Hedging bets by choosing multiple
strategies has a greater likelihood of significantly improving
application performance.

There are many possible methods for incorporating un-
certainty in decision-making, each of which has strengths
and weaknesses. Since we were not sure which method
would work best in mobile computing, we implemented three
methods in our library. The first two, which are described
in Sections V-A and V-B, directly measure prediction error
by comparing the measured value of a quantity with the



previously-predicted value. The sequence of error measure-
ments collected over time is used to predict the uncertainty
of future measurements. In the third method, described in
Section V-C, our library measures decision error by comparing
the strategy selected by the application with the strategy it
should have taken.

So far, we have described only how our library makes
an initial decision to employ a redundant or non-redundant
strategy. Such decisions should be reevaluated when new
information arrives in the form of updated predictions or
even in the form of negative information such as the lack
of response from a remote server. Section V-D describes how
our library performs reevaluation.

A. Brute force

Our first method quantifies predictor error by measuring it
over time and maintaining an empirical distribution. For each
new measurement, our library calculates relative error of a
prediction as the measured value divided by the previously
predicted value. A relative error greater than one indicates that
the last prediction underestimated the true value, whereasan
error sample less than one indicates that it overestimated.The
set of relative errors observed over time forms the empirical
distribution of predictor error.

In order to incorporate the error distributions into a redun-
dancy decision, our library calculates the expected completion
time and resource costs for each non-redundant strategy as
a weighted sum over the joint error distributions of the
predictors. For each redundant strategy, the completion time
at each point in the joint distribution is the minimum of the
completion time of any component strategy and the resource
costs are the sum of the resource costs of all component
strategies. These values are likewise calculated as weighted
sum over the joint error distributions. Our library combines
the individual values to calculate a weighted cost for each
strategy.

A number of possible methods exist for storing distributions;
e.g., storing all samples forever, binning samples, random
sampling, etc. We note that predictor error is constantly
changing; e.g., a quantity such as network bandwidth that was
unpredictable seconds ago may have since settled. Thus, our
library ages samples using an exponential weighted moving
average so that the most recent error samples are given greater
weight. Aging also limits the number of samples stored; older
samples are removed after they drop beyond a threshold where
their impact on the calculation is negligible.

The expected advantage of the brute force method is sim-
plicity and high accuracy; the expected disadvantage is compu-
tational cost. For instance, with a Nexus One phone, decisions
for the applications in Section VI-C can take hundreds of
milliseconds. Our library mitigates this cost by moving brute
force calculations off the critical path. For instance, a net-
work selection application can make an initial non-redundant
decision about which network to use, then asynchronously
run the slower redundancy decision to decide whether to
use an additional network. Additionally, the predictor error
distributions change slowly, so error calculations are cached
and re-used for several decisions.

B. Probabilistic error bounds

Our second method measures and ages samples of predictor
error in the same way as the brute force method, but it uses
probabilistic bounds rather than calculations over an empirical
distribution. Compared to the brute force method, use of
probabilistic error bounds is less accurate but has substantially
lower computational costs.

Previous work in network queuing uses Chebyshev bounds
to give the worst-case error in packet delay prediction [11].
We initially tried this approach but found the resulting bounds
too loose to be useful. Instead, our library uses a Student’s-
t distribution over the observed relative error samples to
construct a statisticalprediction interval (α = 0.05) on the
mean error value. Whereas aconfidence intervalrepresents
the likelihood that the true value of a sampled population
lies within a computed range, a prediction interval represents
the likelihood that thenext sample of the quantity falls in
that range. Since we are attempting to make decisions based
on observations of quantities such as network bandwidth and
latency, whose true values are neither known nor fixed, the
prediction interval fits our purpose more closely.

Given the calculated error bounds, we must decide how to
use them to make a decision. First, we can use the bounds on
all predictors to calculate the resulting bounds on time, energy,
and cellular data; for example, the minimum network transfer
time occurs at the upper bound of bandwidth and the lower
bound of latency. Then, if no two non-redundant strategies
have overlapping time bounds, this means that, with the chosen
confidence, redundancy does not offer benefit. In this case, we
simply choose the best non-redundant strategy.

If any non-redundant strategies’ time bounds do overlap,
we then evaluate redundancy as follows. First, we identify the
best non-redundant strategy. Next, we calculate the maximum
possible benefit from redundancy and the minimum additional
cost, and we choose redundancy if the benefit exceeds the
cost. Since a redundant strategy’s completion time is the time
of its fastest non-redundant strategy, redundancy provides the
most benefit when the supposedly best non-redundant strategy
turns out to be worse than expected and the supposedly
worse non-redundant strategy turns out to be better than
expected. Therefore, the maximum benefit from redundancy
is the minimum time of the redundant strategy subtracted
from the maximum time of the best non-redundant strategy.
Similarly, the additional cost of redundancy is calculatedusing
the bounds of the additional strategies used, not includingthe
best non-redundant strategy.

Because the error bounds method captures the distribution
of error with less precision than the empirical distribution of
the brute force method, and because the computed bounds are
fairly loose, the error bounds method tends to overestimatethe
benefit of redundancy. The choice to use the upper bound on
redundancy benefit and the lower bound on redundancy cost
also biases this method towards redundancy.

C. Bayesian estimation

Our last method quantifies uncertainty by calculating the
posterior distributionof the actual predicted quantities with
the predictor values asevidence. This process is known as
Bayesian estimation. It centers around the Bayesian view of
statistics and probability, which provides a way to formulate
sound beliefs about an environment given some prior beliefs



and new evidence. Prior work applied this technique to com-
putation offload but only considered the bandwidth of one
network and did not consider redundancy [32].

In our case, the prior beliefs are our historical measurements
of predicted quantities such as bandwidth and latency, and the
new evidence is the most recent decision made by the library;
e.g., “based on the predicted bandwidth and latency, WiFi
is better than cellular.” From Bayes’ Theorem, theposterior
distribution of bandwidth and latency is proportional to the
product of theprior bandwidth and latency distributions and
the likelihood of the evidence (the predictors’ decision) given
the prior observations:

posterior=
likelihood×prior

p(evidence)

where p(evidence) is a normalizing factor that ensures that
the posterior distribution is a PDF (that it sums to 1).

It may not be immediately clear how the Bayesian formula-
tion incorporates theerror of the predictors, as was explicitly
done in the prior two methods. To clarify this, we draw an
analogy to a textbook example of Bayesian reasoning: a simple
problem of weather forecasting, answering the question, “will
it rain tomorrow?” In this problem, the prior is the historical
frequency of rain, and the evidence is a forecast (a prediction
of “rain” or “no rain”). Since weather forecasting is imperfect,
a forecast will sometimes predict rain when none occurs,
and sometimes it will predict clear skies when rain occurs.
This inaccuracy is captured in the likelihood measure, which
answers the questions: “when itdoesrain, how often does the
forecast agree?” and “when itdoesn’train, how often does the
forecast agree?”

The likelihood measure answers similar questions for our
library; e.g., “when bandwidths and latencies have been such
that WiFi was better, how often has WiFi been predicted
to be better?” Thus, the Bayesian formulation captures the
accuracy of the predictors, but in a more abstract sense than
the previous methods: by measuring how the inaccuracy affects
the correctness of the resulting decisions.

In order to compute posterior distributions, our library
keep empirical records of the information specified in Bayes’
Theorem: the prior distributions, the likelihood of the pre-
dictor decisions given the priors, and the normalizing factor
p(evidence), which in our case is the strategy frequency
regardless of the priors. These values are binned and kept as
histograms to reduce storage costs.

Each time we obtain a new measurement, we check the pre-
dictors’ decision (e.g., which network is best)just beforethe
measurement was taken. We update thep(evidence) histogram
with the indicated strategy, and we update one histogram in
the likelihood array, using the new measurements to choose
which histogram to update. Note that this is in keeping with
the Bayesian formulation of the problem discussed above;
we are tracking how often the predictors have agreed with
the next observed measurements, for various values of those
measurements.

Given the posterior distributions of predicted quantities, our
library calculates the expected benefit and cost of redundancy
in the same way as in the brute force method. That is, it iterates
over the joint prior distributions and uses the informationthat
it has tracked to compute the posterior joint distribution.It then
uses the joint posterior distribution to compute the weighted

sums as before, and it uses the same method to decide whether
the benefit of redundancy is worth the cost.

Our library ages samples so that older observations have
decreasing impact. In the Bayesian method, it accomplish this
by aging the bins in each prior distribution’s histogram; each
bin in the histogram is now a weight rather than a count. When
a new sample is added to a bin, the weight for all other bins
in that distribution decreases.

It may at first appear that the Bayesian method is equivalent
in performance to the brute force method, since it still pro-
duces a joint distribution over all predictors. In practice, how-
ever, the likelihood distribution is sparsely populated; when
our library calculates the weighted sum, it avoids including
the portions of the joint prior distribution not included inthe
likelihood distribution, because it knows they are zero. Thus,
whereas the the brute force method has complexityO(nm) with
m predictors havingn samples each, the Bayesian method has
complexity O(m×n), or the total number of samples across
all predictors.

D. Reevaluation from new information

The arrival of new information can change the decision
about which strategy to employ. New information may arise
from an explicit event such as association with a new access
point. Alternatively, it may arise from the lack of an expected
event, such as not receiving a response from a remote server
within some time.

Our library reevaluates a decision by repeating the prior
calculations using conditional probability distributions for the
predictors, based on the new evidence. Regardless of the
evaluation method chosen, the library restricts consideration
to only the portion of the distributions that fit within observed
conditions. For instance, given that a remote operation has
already taken at leastx seconds, our library, using the brute
force or error bounds method, considers only the portion of
the joint error distribution that agrees with a duration of at
leastx (e.g., the region of bandwidths and latencies that would
cause the operation to take at leastx seconds). Similarly, if
the library is using the Bayesian approach, it only considers
the regions of the prior distribution that agree, which produces
a conditional posterior distribution.

The notion of what information is sufficient to trigger
reevaluation is application-specific, so our library allows an
application to trigger a reevaluation whenever it observesa
sufficient change in the environment. In the case of an explicit
event, deciding to trigger reevaluation is straight-forward.
However, it can be challenging to determine when the lack
of information is sufficient to justify a reevaluation, so our
library provides additional support for this case.

On application request, the library will calculate the “tipping
point” at which the conditional error distribution calculations
will cause the decision to change. It does a binary search
over the range of a given predictor, noting the strategy chosen
at each point. The search terminates when the tipping point
is found within a specified granularity. Since the strategy
selection is cleanly separable from the details of how a method
is implemented, this binary search works for all three methods
without modifications.

Note that the binary search strategy assumes that only one
predicted value changes based on new information. More



Application → Library Library → Application
make_strategy(time_fn, energy_fn, data_fn, s_arg) → strategy
make_redundant_strategy(strategy[]) → strategy

create_predictor() → predictor
get_predictor_value(predictor) → double
add_measurement(predictor, measurement, new_prediction)
set_predictor_bound(predictor, bound, {UPPER,LOWER})
clear_predictor_bounds(predictor)

register_strategies(strategy[], enum method) → evaluator
choose_strategy(evaluator, c_arg) → strategy

time_fn(s_arg, c_arg) → double
energy_fn(s_arg, c_arg) → double
data_fn(s_arg, c_arg) → double

This table shows the API for incorporating uncertainty into application decisions.

TABLE I: Application programming interface

complex applications for which this assumption is not valid
may simply schedule periodic reevaluations instead.

VI. I MPLEMENTATION

A. Library

We built a library that makes it easy for mobile applications
to consider predictor error in their decisions. Table I shows its
API. An application first specifies the non-redundant strategies
from which it will decide. Each specification includes strategy-
specific functions that calculate the time, battery energy,and
data usage of executing the strategy given predicted quantities.
Next, the application creates redundant strategies; each such
strategy is composed of two or more non-redundant strategies
that will be executed concurrently. Our library will calculate
the time and resource usage of the redundant strategies using
one of the three methods in the previous section.

An application next specifies the predictors, each of which
is responsible for tracking a single quantity such as network
bandwidth or latency. It may specify any combination of
custom predictors or the generic predictors that we describe in
the next section. Our library tracks the error in the predictions.
Thus, each time an application makes a new measurement,
it passes the measurement, the previous prediction for the
quantity, and the new prediction for the quantity to the library.
In turn, when the library runs its evaluation method, it uses
its error-adjusted estimates when invoking the application-
supplied strategy functions, which those functions obtainvia
the predictor interface.

The predictor interface also allows applications to bound
the distribution of possible values based on new information.
For instance, if a cyber foraging application has not received a
response in timex, it sets a lower bound ofx on the response
time. The library will use only the portion of the distribution
with values greater thanx to estimate response time.

Finally, an application passes the list of strategies to our
library and receives back anevaluator. An evaluator is a
handle, which the application can ask our library to choose
the best strategy. The evaluation method is specified when
the evaluator is created, and the evaluator provides a interface
for choosing a strategy and scheduling deferred reevaluation.
The evaluator also takes responsibility for caching previously
computed decisions and invalidating the cached decisions
when new measurements arrive.

B. Predictors

We provide several generic and customizable predictors
for applications to use. We briefly describe here the specific

prediction algorithms that we drew from the literature.
Network bandwidth and latency. The network predictor

implements a flop-flip filter [19] to smooth estimates of
network quality. Separate latency and bandwidth estimatesare
calculated via linear interpolation over varying transmission
sizes. The predictor provides separate estimates for each
available network (WiFi and cellular).

Network dwell time. This predictor estimates the time the
mobile computer will remain in range of the current WiFi
access point. It fits the dwell time to a Weibull distribution
via maximum likelihood estimation using the methods re-
ported by [21]. The effect is that it has low confidence in
the reliability of a newly-associated WiFi network, but the
confidence increases over the time of association. It provides
per-AP estimates given sufficient samples for the current AP;
else, it provides a generic prediction.

Application compute time. This predictor estimates the
time to complete a application-specific computation using an
approach similar to that of Narayanan et al. [25]. It posits a
linear relationship with computation parameters and performs
a regression to generate the best fit. This is application-
specific, so the application must specify the value of the
regression parameters for each observation.

Application energy usage.This predictor uses the Pow-
erTutor models [33] to estimate energy usage as a function
of communication and computation. Similar to the previous
predictor, the amount of computation and communication is a
linear fit over application-specified parameters.

C. Applications

1) Network selection

Network selection allows data to be sent over either cellular
or WiFi, as conditions warrant. Prior work often focuses on
throughput and either sends data over a single network at a
time or stripes data by sending different data over different net-
works. Our work focuses on user-facing activities, so latency,
not throughput, is the relevant metric. In such scenarios, it
may make sense to redundantly transmit the same data over
multiple networks and use the first instance to arrive at the
remote endpoint.

We modify Intentional Networking [13] (though several
systems provide similar multi-network functionality). Our
modified version estimates network bandwidth, latency, dwell
time, and energy usage for each available network using the
predictors described above. For each transmission, it calls into
the library for a decision as to whether the transmission should
be sent using WiFi, cellular, or both networks redundantly.



The decision of when to reevaluate is application-specific.
Our Intentional Networking application reevaluates its choice
of strategy whenever the mobile device associates with a new
network or a network it is currently using fails. In addition, the
strategy choice is reevaluated when a response is not received
after a delay of two times the expected completion time. This
avoids the wasted time and resources of spurious retransmis-
sions when networks are stable, but still allows for quick
recovery from real failures. The reevaluation is repeated every
200 ms until the decision changes or the transfer completes.
The effect of reevaluation is a graceful response to failurein
which a redundant transfer is started on a second network as
the Intentional Networking application loses confidence inits
initially chosen network.

2) Speech recognition

Speech recognition is a classic application of cyber forag-
ing [3], the offloading of computation from a mobile client to
a remote server. We modified the PocketSphinx [6] library to
perform recognition on the mobile device, on a remote server,
or concurrently at both locations.

This application uses the above predictors for network
latency, bandwidth, and dwell time, as well as the predictors
for application compute time and energy usage. The regression
parameter for compute time and energy usage is the length
of the spoken utterance. However, since recognition starts
immediately and proceeds in parallel with the speaking of the
utterance, the precise length of the utterance to be spoken is
not known when the initial decision about where to execute
recognition is made.

Therefore, this application also uses an application-specific
predictor to estimate the length of the utterance using the
utterance lengths that have been observed in the past. The
output of this predictor is used to compute recognition time
(measured from the point when the user finishes speaking
to the time the recognized text is displayed) and energy
(measured over the entire recognition).

In our experience, the upload bandwidth of both 3G and
LTE networks is too low for remote execution—it is faster and
more energy-efficient to run recognition locally. Thus, remote
recognition takes place only when WiFi is available.

The speech application reevaluates decision in three cases.
First, a decision to execute locally is reevaluated if the mobile
device associates with a new WiFi network (since remote
recognition may now make sense). Note that if the local
recognition is likely to complete soon, starting a remote
recognition may not make sense even if network quality is
good. Second, the utterance may be significantly longer than
predicted. The application uses the library’s binary search
feature to precalculate the tipping point for utterance size
and changes its recognition strategy if the tipping point is
reached (e.g., by starting a redundant remote execution).
Finally, the application also uses the binary search feature
to calculate a tipping point in case remote recognition takes
longer than expected. This is the point at which a redundant
local recognition is started.

VII. E VALUATION

A. Experimental Setup

1) Testbed

We run all applications on the AT&T version of the Nexus
One, running Android 2.3.4. We modified Android to allow the
simultaneous use of WiFi and cellular networks. To ensure
repeatable experiments, the phone connects to an isolated
WiFi access point and a private Cisco MicroCell that is
connected to AT&T’s network. Since the MicroCell acts as
a miniature cellular tower, our evaluation captures the effects
of the cellular wireless medium on network bandwidth and
latency. We emulate network conditions by passing all traffic
through a computer that inserts delays with the netem [23]
network emulator and throttles throughput using the Linux
Advanced Routing and Traffic Control tools [22]. We run
servers for each application on a Dell Optiplex GX270 desktop
with a 2.8 GHz Pentium 4 processor and 1GB DRAM.

We measure energy usage by applying PowerTutor’s Nexus
One power model [33]. We measure cellular data usage by
reading the number of bytes sent and received through the
Linux sysfs interface.

2) Scenarios

Performance, energy, and cellular data usage have varying
importance to different users. We capture this through the
importance factors described in Section V. Our experimental
results are thus given as a weighted cost that is derived from
using these factors to equate the diverse metrics of time, energy
consumption, and data usage. One can contextualize these
factors in order to give them concrete meaning; e.g., “I am
willing to spend X Joules to save Y seconds of waiting.”

We evaluate our results in four different scenarios, each
of which reflects a different tradeoff between performance
(interactive delay) and resource consumption (energy and
data usage). The first is theno-cost scenario, in which
performance is the only consideration (energy and data usage
are not considered). Table III shows the time-energy tradeoff
in the remaining three scenarios:low-cost, mid-cost, and
high-cost. In the low-cost scenario, a user is willing to
spend 100 Joules to save 1 second of waiting. With that amount
of energy, the user could watch 36 seconds of streaming
video, or the user could leave the phone idle for an additional
37 minutes. Based on the average behavior (including both
idle and usage periods) given by a recent study [27], this
would equate to 6 minutes of extended battery lifetime. In the
mid-cost scenario, 1 second of waiting equates to 3.6 seconds
of video watching, 3.75 minutes of idle time, or 36 seconds
of average usage. In thehigh-cost scenario, 1 second of
interactive delay purchases only 0.36 seconds of video playing
or 22.5 seconds of battery lifetime on a completely idle phone.
This already seems like a very poor tradeoff, so we did not
investigate higher cost scenarios.

Similarly, in the low-cost scenario, 1 second of waiting
time equates to saving 100 KB of data usage. In themid-cost

and high-cost scenarios, 1 second of waiting equates to
10 KB and 1 KB of data, respectively.

3) Trace-driven evaluation

We use trace-driven emulation to provide experimental
repeatability and allow for meaningful comparison between



Scenario WiFi WiFi 3G Bandwidth (Kbps)
Coverage session length Downlink Uplink

Median Max Median Max Median Max
Walking 69% 41 sec 5 min 137 737 48 454
Driving 27% 7 sec 2 min 368 1200 40 74

TABLE II: Details of the network traces used for evaluation

Battery life reduction
Expected Low-cost Mid-cost High-cost

Usage battery life (100 J) (10 J) (1 J)
Idle 125 hours 37.5 min 3.75 min 22.5 sec

Average 20 hours 6 min 36 sec 3.6 sec
Heavy 2 hours 36 sec 3.6 sec 0.36 sec

This figure shows the approximate battery life impact of spend-
ing various amounts of energy to save 1 second of delay in
different evaluation scenarios.

TABLE III: Performance-energy tradeoff in various scenarios

strategies. We gathered these traces by continuously measuring
the bandwidth and latency via active probing to a server at
the University of Michigan. We use two traces that illustrate
different mobility scenarios: a walking trace gathered on our
institution’s campus, and a vehicular networking trace used in
the evaluation of Intentional Networking [13]. The vehicular
trace illustrates a highly-mobile scenario with challenging
network dynamics. The walking-trace has longer associations
with WiFi access points and better overall connectivity. Ta-
ble II details the network characteristics for the two traces.

When running benchmarks, we replay the traces on the
emulation computer, which throttles bandwidth and delays
packets for each network according to the conditions observed.
When no WiFi or cellular coverage is observed in a trace,
the throttling computer drops the connection. The Android
OS typically discovers the network disconnection after sev-
eral seconds. Since the collected traces are longer than our
experiments, we use only the first portion of each trace.

B. Results

1) Network selection

To evaluate the effectiveness of redundancy in network
selection for small, interactive transfers, we constructed an ex-
periment in which the application executes a series of request-
response exchanges using Intentional Networking. These re-
quests and responses are of random sizes, normally distributed
about 1 KB and 4 KB, respectively. The application pauses be-
tween requests for a think time uniformly distributed between
10 and 30 seconds.

We compare the results using our library to two simple
strategies: only use cellular, or use WiFi when available and
fall back to cellular when it is not. WiFi-preferred is effectively
the strategy currently employed by Android and iOS.

For comparison, we also built an adaptive strategy that uses
the same cost weights and formulas as our library to calculate
the time, energy, and data cost in order to select either cellular
or WiFi (when available). This is a standard adaptive strategy
that treats predictions as oracles and does not incorporate
uncertainty. It also does not reevaluate its decisions based on
new information.

Each experiment runs for 20 minutes. We report the total
weighted cost over this 20-minute interval. All results are
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Fig. 1: Network selection, walking trace

the mean of 5 runs; error bars are 95% confidence intervals.
Application performance is the time the user spends waiting
for a response to each request. We first discuss the results for
the brute force method, and later compare the three evaluation
methods.

Figure 1 shows weighted cost results for the walking trace,
normalized to the weighted cost of the cellular-only strategy.
Redundancy provides the most benefit in theno-cost sce-
nario, when performance is of utmost importance. Compared
to a cellular-only strategy, the user spends 24% less time
waiting when redundancy is employed. The reduction in
waiting time due to redundancy is greater than a factor of
two compared to both the WiFi-preferred and the adaptive
strategies.

It may seem surprising that the slower cellular-only strategy
provides better performance than the WiFi-preferred strategy
that mobile devices commonly employ. The impact of WiFi
failure detection delay accounts for this gap; even though it
often provides better performance, WiFi is less reliable when
the user is moving. A few long delays due to failure detection
and failover when the mobile device moves out of range of an
access point dwarf the performance difference between cellular
and WiFi.

The low-cost scenario shows similar results to the
no-cost scenario. However, since energy and cellular data
now have non-zero weight, the WiFi-preferred and adaptive
non-redundant strategies show improved results. Our library
provides an improvement of 21% over cellular-only and 44%
over WiFi-preferred and adaptive strategy.

The utility of redundancy drops as resource conservation
becomes more important. In themid-cost scenario, the
strategies that prefer to send less cellular data have improved
considerably. Our library’s redundant strategies are equivalent
within experimental error to the best non-redundant strategy
(WiFi-preferred). However, for the brute force and Bayesian
methods, both the average and the variance are still lower than
WiFi-preferred, due to redundancy reducing the effect of the
outliers caused by WiFi failover delay. This contributes toa



less variable user experience.
In the high-cost scenario, the brute force and Bayesian

strategies are equivalent within experimental error to thebest
non-redundant strategy (WiFi-preferred). Thus, our library
achieves benefit from redundancy when it is available and
correctly chooses to avoid redundancy when it is not helpful.

Note that since the cellular-only strategy never uses WiFi,a
user could potentially achieve slightly better energy usage by
disabling WiFi. However, the energy savings from doing so
are minimal (1% reduction in weighted cost in thelow-cost
scenario to 4% in thehigh-cost scenario). Any potential
gains are therefore dwarfed by the poor performance of
the cellular-only strategy. Further, the user would lose the
opportunity to employ WiFi when it is best (as it is in the
high-cost scenario).

We also ran our experiment with the driving trace. Unlike
the walking trace, opportunistic WiFi provides little benefit,
because most sessions are short and unreliable. Thus, cellular
only is best in all scenarios.

The unshaded bars in Figures 1 compare the relative
weighted cost realized by the three redundancy evaluation
methods. The results are mixed when comparing our three
methods. The Bayesian method is often best in higher cost
scenarios and the brute-force method is often best in lower
cost scenarios. The brute force method has higher computa-
tional complexity, which may result in higher weighted cost.
The Bayesian method incorrectly sends some transfers non-
redundantly in the lower cost scenarios because it is less
accurate than the brute-force method.

The error bounds method performs the poorest in general.
It spends resources more readily, resulting in higher weighted
cost in the scenarios where resource conservation is more
important. Since the bounds are loose, the method is prone
to having an inflated view of predictor uncertainty and thus
naturally tends more towards redundancy.

2) Speech recognition

To evaluate the effectiveness of redundancy in a speech
recognition application, we selected 20 utterances ranging in
length from 1 to 8 seconds. We simulate a user speaking at
the original sampling rate of 20 KB/sec, looping over the
20 utterances at 30-second intervals until 20 minutes have
elapsed. The performance metric is the recognition delay, or
the interval between the time when the user finishes speaking
and the time with the transcribed text is available. We report
the total weighted cost, which reflects only recognition delay
and energy usage in these experiments because cellular usage
is negligible.

The two non-redundant strategies are to execute locally or
to prefer remote recognition using only WiFi. We compare
against an adaptive strategy that considers time and cost
but not predictor error. The redundant strategy executes both
locally and remotely.

Figure 2 shows the results for speech recognition on the
walking trace. Note that the approximate break-even point
for redundancy is even higher in this application—that is,
redundancy still shows significant benefit in themid-cost
scenario. Speech recognition generally takes longer than a
single small request/response exchange, so there is more delay
to be saved for a given cost.
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Fig. 2: Speech recognition, walking trace
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Fig. 3: Speech recognition, server load trace

In theno-cost scenario, redundant strategies are generally
best, with performance improvement of 23–35% over the
remote-preferred and adaptive non-redundant strategies,and
improvement of more than a factor of two over the local-only
strategy. The exception is the Bayesian method, which shows
high variance and thus is equivalent within error to the remote-
preferred and adaptive non-redundant strategies.

In the high-cost scenario, the remote-preferred strategy
dominates due to its reduced energy usage, and executing a
local redundant recognition is not worth the cost. Our library
correctly selects the non-redundant strategy in this scenario.

Note that, as was the case in network selection, no single
strategy is always best, and our library reduces weighted cost
by up to a factor of two compared to the simple strategies in
scenarios where they are not best. Also, even though local-
only is never the best strategy in any scenario, using local
execution in addition to remote execution does provide benefit
in reducing the uncertainty of remote execution, as it mitigates
the impact of failover delays.

We also ran this application with the driving trace. Similar
to the previous application, the poor network quality causes
local recognition to always dominate remote recognition. Our
library achieves equivalent performance by correctly selecting
the local recognition in almost all cases.

Finally, we ran the speech application in a scenario designed
to show the impact of server load. In this experiment, a
high-quality WiFi connection is always available, but we add
a background load of concurrent clients requesting speech
recognition. Concurrent recognitions are performed by sepa-
rate event-based server processes that compete for the CPU
resource on the server. We vary the number of concurrent
requests according to a Poisson distribution, with the average



load increasing from 6 to 10 concurrent clients during the
course of a 10 minute experiment. Since the network is stable,
this experiment shows how our library reacts to changes in
recognition time due to server load and varying utterance
lengths.

As Figure 3 shows, our library reduces recognition delay in
theno-cost scenario by 23% compared to the local-only and
remote-only strategies. The adaptive non-redundant strategy
also performs poorly in this scenario because it frequently
makes incorrect decision due to the difficulty in predicting
future server load. Our library achieves improved performance
by hedging its bets with redundancy. Our library achieves
similar benefit in thelow-cost and mid-cost scenarios by
choosing local recognition in periods where the server load
is likely to be high, remote recognition in period where the
server load is likely to be low, and hedging its bets when there
is uncertainty about which strategy is best. In thehigh-cost

scenario, remote recognition is always superior. However,our
library sometimes hedges its bets via redundancy. Therefore,
it outperforms the local-only strategy but under-performsthe
remote-only and adaptive strategies (it saves time but uses
more energy).

For this application, the error bounds method performs the
best on the network trace. The brute force and Bayesian
methods are generally equivalent within experimental error
and best on the server load trace. As with the previous
application, the Bayesian method is prone to underestimating
uncertainty and choosing redundancy less readily. The brute
force method again has high computation complexity.

3) Discussion

Overall, we observe significant benefit from redundancy:
user wait time is reduced by up to a factor of two. Further, our
simple back-of-the-envelope estimations suggest that sufficient
resources are available quite often for the average user. When
redundancy offers no benefit, our library usually approximates
the best non-redundant strategy. The one exception is the
high-cost scenario for speech recognition with CPU load:
in this case, the library overestimates the inherent variability
and sometimes chooses redundancy inappropriately.

VIII. C ONCLUSION

Current mobile applications greatly overestimate their abil-
ity to predict the future. Overconfidence leads to mistakes—a
strategy that is optimal for the predicted values can still be
incorrect because the predictions on which the choice was
based turn out to be wrong. We argue that applications should
consider uncertainty throughout the entire decision process,
and we provide a library with three methods for doing so.
When uncertainty is correctly reflected in decisions, redundant
strategies that hedge against that uncertainty are often best.
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