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1. INTRODUCTION

Wireless infrastructures are increasingly diverse, complex,
and difficult to manage. Those who restrict themselves to
homogeneous, managed campus or corporate networks are
a vanishing breed. In the wild, users are confronted with
many overlapping infrastructures with a broad variety of
strengths and weaknesses. Such diversity of infrastructure
is both a challenge and an opportunity. The challenge lies
in presenting the alternatives to applications and users in a
way that provides the best possible utility to both. However,
by managing these many alternatives, we can provide signifi-
cant benefits, exploiting multiple networks concurrently and
planning future transmissions intelligently.

To this end, we are developing Intentional Networking—
a set of interfaces and mechanisms that allow applications,
users, and the operating system to proactively manage cur-
rent and expected future connectivity. We do this through
extensions to the networking API. Applications can classify
sockets or individual transmissions with a label, a qualitative
statement about the flow. The operating system can then
best match each flow with network capabilities. In some
cases this requires a re-ordering of the application’s send or-
der; our API offers both blocking and event-based interfaces
to allow this reordering.

Exposing multiple network interfaces that come and go—
even under a single, virtualized contact point—presents a
surprising number of challenges for “regular” applications
that typically assume a single, long-lived interface. In partic-
ular, some services are not prepared to support clients with
multiple points-of-presence, nor re-ordering across them. Af-
ter outlining our interface design, we present a taxonomy of
the issues that existing applications might face in migrating
to this new model.

Some applications do fit our model quite closely — par-
ticularly those designed for use with high-delay networks
or volatile connection points. Such applications may be
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transparently adapted to our framework, but this requires
inference of labels. This might be done through iterative
adaptation using APIs that applications export, or possibly
through stack introspection and flow analysis.

2. DIVERSITY AND MOBILITY

As the wireless market continues to grow, two trends have
become clear. First, there is a growing diversity in con-
nectivity options. Second, users have come to expect and
demand true mobility, rather than simply nomadicity.

There are several factors contributing to connection di-
versity. The tension between power, coverage, and band-
width [18] has given rise to a variety of overlapping networks—
broad-area, low-rate coverage augmented with small pock-
ets of high-speed connectivity where usage density warrants
such deployments.

Such overlapping networks are only one source of connec-
tion diversity—within a single layer, there is often significant
variation in capacity and capabilities. For example, con-
sider WiFi hotspot deployments. These access points are
under decentralized control, are managed by a varied set of
residents and businesses, and have different back-end wired
connections to the broader network. Many APs reject or
restrict foreign users in a variety of ways, and “front-side”
wireless bandwidth is often not the bottleneck. Since there
is no common administrative control, there is also no cen-
tralized database to guide users’ selection policies in favor of
the APs providing the best service. While many searchable
databases of “wardriving” maps exist, these maps become
outdated quickly and provide no information about access
points apart from the basic information broadcast in the
beacon signal.

At the same time, users increasingly demand connectiv-
ity while on the move. The growth in converged devices for
constant connectivity has been unprecedented, and indus-
tries from health care [6] to automotive [14] are increasingly
turning to constant connectivity to increase effectiveness and
add value. These users expect near-constant connectivity,
no matter where or when. This is markedly different from
the nomadic, laptop model—where users move infrequently,
and compute only when in one place.



3. ACTIVE CONNECTION MANAGEMENT

Rather than leave each application to its own devices, we
propose a new model of network connectivity management
at the operating system level. This connection manager is
comprised of two main components. First, the virtual link

layer resides in the kernel, between the existing network
and link layers of the protocol stack. This component uses
the physical network interfaces present on the device to con-
nect simultaneously to all usable access points in the current
vicinity. The complexity of using multiple interfaces is hid-
den behind a single unified network interface that is the one
network device visible to applications and users. All data
flows are routed through this interface, which assigns each
to the virtual network interface best matching the needs
of the flow. Applications that are aware of this interface
use labels to indicate needs of data flows with regard to in-
teractivity, foreground/background priority, and bandwidth
needs. Labels can be passed by setting socket options or as
an optional argument to send.

Second, the connection scout is a privileged, user-space
process with a two-fold purpose. Its first task is to discover
and evaluate new network access points, similar to the AP
selection process described earlier. As it finds a new net-
work connectivity option, it informs the virtual link layer
so that it might be utilized by data flows. The connection
scout informs the virtual link layer of the connection quality
test results for each new access point, so that the virtual
link layer can best match the needs of data flows with the
capabilities of network interfaces. The second task of the
connection scout is to maintain the device-centric mobility
model. Based on the different WiFi access points, GSM and
WiMax towers, and other fixed beacons the connection scout
detects as it scans for new connectivity, it builds a Markov
model that seeks to predict future device movement based
on past behavior and the current location. Both applications
and the kernel query this “oracle” and are free to apply the
resultant prediction in application-specific ways.

Figure 1 gives a conceptual overview of how our virtual

link layer functions. In the figure, our device has three dif-
ferent wireless radios: IEEE 802.11, Bluetooth, and WiMax.
The virtual link layer creates a virtual network device inside
the kernel for each available physical AP. In our example,
there are three 802.11 APs present, two Bluetooth devices,
and one WiMax broadcast tower, for a total of six virtual
network devices.

In contrast, current kernels export one interface for each
physical device. This forces a static association between
interfaces and access points which cannot allow two simul-
taneous flows to use different access points with different
characteristics for open ports, latency, bandwidth, etc. Fur-
ther, current kernels use static routing tables to assign all
flows with the same destination address to a single inter-
face. Our virtual link layer, however, can assign multiple
flows from the same application and the same destination
address to different virtual devices, which causes them to
use different physical devices or APs. This complexity is
hidden from users and applications, with the exception that
applications aware of our API can label some or all of their
flows to empower the kernel to make better assignments.

When an application creates a new data flow (i.e., a new
socket), regardless of which connectivity sources the user’s
device has access to, the socket is bound to the single, unified
network interface. Based on the qualities of service that are
important to the flow, the flow is assigned to one of the vir-
tual network interfaces. When data is received by one of the
virtual network interfaces, it is forwarded up to the unified
network interface. Many applications see this as a single
interface regardless of whether it arrived via one of many
WiFi APs, Bluetooth, WiMax, or some other link technol-
ogy. Some applications—those with an internal notion of
connection—require notice when interfaces change.

Different data flows require different types of network con-
nections. Some, such as ssh sessions, are interactive but
have fairly modest bandwidth requirements. Others, such as
peer-to-peer file transfers, may have large bandwidth needs
but need not be completed in the foreground. Certain flows
are sufficiently important that they should be serviced via
links with high monetary cost if necessary. If the kernel
were aware of such requirements, based on the AP property
information determined by the connection scout it could as-
sign data flows to the most appropriate of all available in-
terfaces. Such information is most valuable in situations
where many data flows are competing for limited network
resources. Data flows that are high-priority or require a ro-
bust connection (such as VoIP calls) could still be serviced
when connectivity is scarce, and less important flows would
be deferred until the mobile device moved to a new area with
a surplus of wireless bandwidth. This priority information
would also be useful when deciding if a data flow is impor-
tant enough to transmit over a costly GPRS or other pay
link.

Unfortunately, applications, not the kernel, understand
the semantics of data flows. The kernel is aware of objects
such as sockets, but has no direct information about what
the data passing through the socket is attempting to ac-
complish. To support this, our system pierces the abstrac-
tion barrier between applications and the kernel. When cre-
ating a new socket, applications transmit some additional
information—declarative hints—to the kernel.

One might think to make these hints very detailed. For
example, applications could be required to predict the av-
erage, minimum and maximum bandwidth and latency re-
quirements of a socket. However, we believe this would im-
pose an unreasonable burden on application programmers.

Instead, we define a simple interface that is expressive
enough to provide the kernel with enough information while
minimizing application burden. Applications communicate
the following three Boolean values to the kernel on a per-
socket basis:

• Interactivity: Is this flow part of an interactive task
that should be completed as soon as possible to mini-
mize wait time?

• Bulk Transfer: Is this flow a bulk transfer that re-
quires substantial network bandwidth to complete?

• High Value: Is this flow sufficiently important that
it should be serviced via a pay-per-use link (such as
GPRS, or a commercial WiFi AP) if that is all that is
available?
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Figure 1: Virtual link layer architecture.

Once the quality of connectivity offered by access points
and the connectivity needs of data flows are both known, the
remaining task is to assign flows to the best interface. When
multiple network interfaces exist, current operating systems
assign data flows to interfaces based on network layer rout-
ing tables. For example, in IP networks each interface has an
associated IP address and subnet mask. Depending on the
destination IP address in each outbound packet’s header and
the subnet masks of the available network interfaces, the net-
work layer routes the outbound packet to an interface. This
model works fine when multiple network interfaces partition
the IP address space among themselves for some purpose,
such as when different interfaces are on different physical
LANs.

We propose a very different paradigm in which network
interfaces and APs are chosen based on declarative hints
rather than network addresses. Our unified network inter-
face has the responsibility of deciding to which of the avail-
able virtual network interfaces the flow should be assigned.
When outbound data arrives at the unified interface, the
module decides which physical network should handle traf-
fic, based on declared or inferred flow characteristics.

There are times when the only available networks are ill-
suited for the data at hand. For example, a large oppor-
tunistic transfer should not be sent over a low-bandwidth,
high-cost link. One could return an error in such cases,
but this places the burden of when to retry to the appli-
cation, rather than the connection scout. Instead, we offer
two additional mechanisms in our interface. The first blocks
the message until the network is available, with an optional
timeout. The second returns immediately, but takes a clo-
sure as an additional argument. This closure is invoked when
a suitable network is available. Closures may be canceled if
so desired. We expect the blocking form to be more useful
to threaded applications, while the closure form will better
fit event-based applications.

These API features are extensions to the normal socket
interface. Legacy applications can continue to use the unex-
tended interface. They will then depend on the connection
manager to map the application as a whole to the best avail-
able network. Extension-aware applications can benefit fully
from the many alternatives available.

4. APPLICATION TAXONOMY

Intentional networking is more appropriate for some ap-
plication styles than others. At one extreme, connection-
oriented applications with no concurrency have very limited
opportunities to take advantage of diversity and prediction.
However, applications that are more flexible offer more op-
portunities. In considering how best to adapt an application
to this model, we consider several dimensions:

Homogeneous vs. heterogeneous traffic: Many ap-
plications have a single set of labels for all traffic. Such
applications can be handled transparently—their flows are
mapped to the best fit at any given time. Others issue traffic
with different needs over time, and they often require some
application involvement beyond simply providing labels, as
the rest of this section shows.

Message passing vs. request-response: The sim-
plest applications to adapt are those that rely strictly upon
message passing, without requiring responses for progress.
Such applications can freely send across different physical
interfaces with minimal consideration given to application
semantics. Examples of such applications include oppor-
tunistic, gossip-based protocols, and those crafted to fit well
with delay-tolerant networks [12].

Strictly vs. loosely ordered: Some applications, par-
ticularly those with connection-oriented semantics, assume
that messages cannot be reordered by lower layers. Of-
ten, this assumption is unnecessary, but breaking it requires



refactoring applications in several ways. In particular, such
applications must declare the boundaries across which re-
ordering is possible, but within which it is not. With datagram-
oriented applications, individual calls to send implicitly iden-
tify these boundaries, but connection-based applications must
explicitly mark them in some way. Finally, some applica-
tions cannot tolerate re-orderings within a single connection
at all. Such applications can generally use a single network
at a time, switching among them as conditions change.

Connection breadth and depth: Connection-oriented
applications can be further broken down by the breadth of
the connections they expect or support. At the extreme,
some applications expect only one connection from a prin-
cipal, even one with access to more than one machine. For
a time, the University of Michigan’s VPN was configured to
allow only one connection from any machine for each au-
thenticated user. Some applications assume a single con-
nection between any particular client machine/server pair.
Supporting such scenarios requires“re-connection”each time
the connection manager changes endpoints. This may be as
simple as a TCP connect, or it may require an application-
level action such as authentication. In either case, the clo-
sure mechanism for deferred sends is overloaded to provide
the necessary action. In the worst case, such reconnection is
intrusive to the user; such applications are poor fits for our
model.

5. INFERRING LABELS

Some existing applications meet many, if not all, of the
constraints identified in the prior section. We expect to ex-
plore a variety of techniques to support such legacy applica-
tions. They include external adaptation and causal analysis
combined with stack introspection to learn the communica-
tion patterns of applications.

The first technique is called iterative adaptation [9]. The
insight of this approach is that many applications provide
APIs that allow other services some degree of control over
the application’s behavior and actions. These APIs have
been used for adaptation in the resource-constrained envi-
ronment of mobile data access without requiring any source
code modifications. We expect to be able to apply the
same approach; by intercepting user actions and correlat-
ing that to network usage, we believe it possible to identify
on-demand activity. We may even be able to classify op-
portunistic behavior by observing UI updates that do (or,
importantly, do not) happen together with I/O activity.

The second technique is more involved but requires no
exogenous application support. It combines stack intro-
spection techniques from the security community [36] with
causal analysis techniques recently used to provide high-
performance file systems that provide strong persistence guar-
antees [26]. This scheme tracks user and UI behavior through
the operating system, identifying the set of inputs that can
possibly have influenced a set of outputs.

Of course, this set is possibly too large because it tracks
any relationships that might have been causal. However,
there are some techniques that we can use to prune the set.
For example, by observing many executions of similar code

paths, we can eliminate candidate causal events that only
happen some of the time [19]. Likewise, we could apply
taint checking to track causality within a process [24]. Un-
fortunately, such taint checking is extremely expensive, but
progress has been made in paralleling the task [25].

It is important to be conservative in any of these schemes.
However, it is also possible to apply them offline, or in con-
trolled environments, or even post-hoc given user behavior
traces. This allows the application of heavy-weight mech-
anisms such as taint analysis offline. The results of offline
analysis van be used in online stack introspection.

6. RELATED WORK

The push toward ubiquitous computing makes automatic
service discovery in new environments more important than
ever [32]. Existing work, however, has focused more on en-
abling application-level services [8, 13, 34] than choosing and
managing a diverse set of network connections.

Several systems seek to allow clients of one wireless service
provider to access foreign wireless hotspots when roaming [3,
11, 21, 31] or between public and private networks [22]. Our
work is complementary, since users must find and associate
to an access point before negotiating such roaming agree-
ments. This service discovery is similarly critical for grass-
roots wireless collective initiatives [2, 28, 33].

Marmasse [20] argues, as we do, in favor of a user-centric
mobility model. Her comMotion system is concerned chiefly
with tracking users’ movement through various semantically
meaningful locations, such as “home” or “work”. We, on the
other hand, focus on lower-level waypoints—namely, wire-
less connectivity points. The semantic concept of user-defined
locations could easily be layered atop such low-level infor-
mation, however.

Several prior projects have explored the problem of seam-
less handoff, possibly between different network technolo-
gies [16, 38], but without regard to application semantics.
Others have tailored network management with a particular
class of application in mind [7], and some require applica-
tions to disclose full resource consumption details [27]. To
the best of our knowledge, Intentional Networking is the first
system seeking to manage multiple wireless networks with
an eye to application needs, by asking only for qualitative
statements about network usage.

MultiNet, now known as Virtual WiFi [5], virtualizes a
device’s wireless interface, fooling applications into believ-
ing the device is connected simultaneously to different APs
on different channels. This is a step in the right direction
because devices can now exploit all available connectivity
in their vicinity. Unfortunately, the complexity of assigning
data flows to interfaces is still present. All available APs
are presented to higher layers of the network stack as if the
device had a wireless radio for each AP that is present. We
propose implementing similar functionality, to both allow
searching for new APs in the background and allow con-
current utilization of all wireless networks the device can
see at a given location. Applications and users will only be
aware, however, of a single unchanging network interface.



Unlike Virtual WiFi, the kernel will be responsible for as-
signing data flows to a certain virtual interface. FatVAP [17]
presents a similar infrastructure but operates only within a
single layer of an overlay network. FatVAP is concerned
only with maximizing overall throughput, without concern
for other application-level preferences.

Contact Networking [4] hides the differences between local
and remote communication from users. All communication
appears to be local—like a direct Bluetooth connection be-
tween two devices—even if infrastructure such as the Inter-
net is actually involved. Like us, the authors recognize that
mobile devices typically have several, heterogeneous wire-
less radios at their disposal. Contact Networking is also
conscious of the properties of different link layers. Their pri-
mary focus, however, is on neighbor discovery, name resolu-
tion, and (ultimately) the preservation of application-level
sessions in the face of user mobility. Our work does find
common ground with the idea that all network connectivity
options are not equivalent, and the operating system should
dynamically assign data flows to the most appropriate link.

Zhao, Castelluccia, and Baker’s work [37] attacks simi-
lar problems as Contact Networking. Their work lies firmly
within the framework of Mobile IP [30] as well. The user’s
Home Agent is required to arbitrate the routing of various
data flows. Furthermore, applications must explicitly bind a
data flow to a specific interface through their SO_BINDTODEVICE
socket option. We propose a decentralized solution, and en-
vision the operating system automatically assigning flows to
the optimal interface, aided at most by simple hints from
applications.

Much recent work has argued that the multiple network
connectivity options available to today’s mobile devices is a
blessing, not a curse. Johansson et al. [15], among others,
show how Bluetooth radios are often preferable to IEEE
802.11 for short-range, low-power communication. Bahl et
al. [1] illustrate scenarios where multiple radios help devices
save energy, enhance their data communication capacity,
make wireless AP handoff more seamless, and better tol-
erate wireless link problems. Draves et al. [10] show how
overall throughput can be increased for multi-radio nodes
in mesh networks, by dynamically choosing the “best” out-
bound link when forwarding a given packet. Stemm and
Katz [35] were some of the first to recognize the hierarchical
nature of overlapping wireless networks. Much like cache
hierarchies in computer architecture, multiple wireless net-
works commonly cover one spot, with the utility (e.g., band-
width) of a network usually inversely proportional to its cov-
erage radius.

7. STATUS AND CONCLUSION

We are currently applying our ideas to two systems: Thun-
derbird, Mozilla’s mail client, which supports the IMAP [23]
protocol, and BlueFS [29], a distributed file system that
supports consumer electronics devices in a mobile context.
These have been educational. In both cases, the applications
make more stringent assumptions about order and connec-
tivity than are necessary. It is not yet clear to us whether
these assumptions reduce complexity, or were made only be-
cause they were originally designed for an infrastructure that
supports infrequent mobility at best.

Each of these are connection-oriented, and each expects
only a single connection per client machine/server pair. How-
ever, each also provides traffic that could be delivered oppor-
tunistically. Thunderbird periodically fetches email head-
ers/bodies in the background, and such transfers can be de-
ferred. Both Thunderbird and BlueFS can defer updates—
outbound email messages and updated or created files—to
times of high bandwidth. Thunderbird currently assumes
that network messages are ordered, though weaker seman-
tics appear possible. BlueFS allows some messages to be
reordered. As we gain experience with our proposed set of
interfaces, we expect to develop a set of design rules to help
applications fit the model of diversity and change in net-
working capability.

It is clear to us that designing for a single point in the
network space—wired, WiFi, Bluetooth, etc.—is no longer
acceptable for truly mobile computing. Rather, one must ac-
cept that networks of widely varying capability will be avail-
able and should be exploited whenever necessary. Doing so
requires a collaboration on the part of system and applica-
tion. System support provides the means to discover and
characterize new networking options as they become avail-
able and predict near- to medium-term connectivity when
possible. Applications must provide semantic information
to best match data flows with this diverse set of connec-
tivity options, as well as provide the mechanisms to switch
between them. Over time, we expect to develop several new
models of application communication to best take advantage
of these environments.
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