DSearch: Distributed search for a personal area network

Garrett Brown, Daniel Fabbri, Brett Higgins and Azarias Reda
{garretto, dfabbri, brettdh, azarias} @umich.edu
University of Michigan, Ann Arbor, MI

Abstract

An increasing amount of data is being stored on mobile
devices with growing storage capacity and functional spe-
cializations. As a result, searching through a user’s dis-
tributed data set effectively is crucial. Previous search ar-
chitectures tuned for single, stationary devices are not ef-
fective at managing the challenges associated with query-
ing data across heterogeneous machines. These designs do
not consider the complex set of constraints and challenges
in the distributed search domain. We propose a distributed
architecture, DSearch, to manage the complexities of a mo-
bile data set to improve query performance across all the
devices in a user’s personal area network. First, we pro-
vide a light-weight infrastructure that can efficiently orga-
nize and search a set of devices. Second, we develop a mem-
bership system to manage the dynamics of multiple devices
in a network. Third, we analyze three search index replica-
tion schemes to improve query performance. We developed
the DSearch distributed search architecture and evaluated
its performance.

1. Introduction

Searching through a user’s distributed data set effectively
is crucial. User content is increasingly stored on multiple
digital devices. In fact, it has been estimated that 55% of all
digital information resides on personal computers [11]. Fur-
thermore, individuals continue to purchase new cell phones,
laptops and hand held devices with ever growing storage
capacities and functional specializations. Previous search
architectures tuned for single, stationary devices are not ef-
fective at managing the challenges associated with query-
ing data across heterogeneous machines. To support the
changes in storage patterns, alternative search organizations
are necessary. This paper proposes a distributed search ar-
chitecture, DSearch, for multiple devices in a user’s per-
sonal area network.

Conventional desktop search and distributed file systems
have relied on practically unlimited resources to organize

and search user content. These designs do not consider
the complex set of constraints and challenges in the dis-
tributed search domain. Specifically, these systems take for
granted devices’ physical location, connection capabilities
and intermittent periods of connectivity. Also, complex file
systems assume the presence of a particular operating sys-
tem running on a high-powered processor, in contrast to
extremely heterogeneous mobile devices that have limited
processing power. Given these constraints, we examine the
best way to replicate search indexes within a user’s personal
area network for improved query performance.

We propose a distributed architecture, DSearch, to man-
age the complexities of a mobile data set to improve query
performance across all the devices in a user’s personal area
network (PAN). First, we provide a light-weight infrastruc-
ture that can effectively organize and search a set of de-
vices. Because of mobile devices’ limited computation abil-
ities, full-fledged data indexing mechanisms are not practi-
cal. Second, we develop a membership system to manage
the dynamics of multiple devices in a PAN that records the
current set of active devices and distributes information to
the group.

Third, we examine three search index replication
schemes to improve query performance. In the basic, no
replication architecture, queries are sent to each active de-
vice in the PAN. Every device in this configuration searches
its own content and responds with a list of matching files.
The basic design limits search performance since the slower
devices are queried and must be waited on for complete
query aggregation. A centralized architecture improves on
the basic design by replicating all search indexes to a co-
ordinator, which is assumed to be always-on, although this
does introduce a single bottleneck and point-of-failure. For
each query, only the coordinator is sent a request and com-
putational slower devices are bypassed. Lastly, we provide
a device-based replication scheme that allows each device
to select which other devices’ search indexes to store locally
based on query latency. We vary the number of replicas that
can be stored at each device and examine the query time for
all the designs.

This paper makes the following contributions:

o Light-weight search infrastructure. Python based
application architecture that runs on desktops, laptops
and mobile devices.

e Dynamic membership management. System to
manage the arrival, departure, and intermittent connec-
tivity of devices in the personal area network.

e Search index replication for improved query per-
formance. Three replications architectures (no repli-
cation, centralized replication, device-based replica-
tion) tested and evaluated for query performance.

In Section 2 we provide a brief summary of the back-
ground in search systems and discuss related work. We
go into more detail on DSearch itself in Section 3, and de-
scribe the implementation in very granular detail in Section
4. We layout a graphical model of our replication optimiza-
tion scheme in Section 5 and evaluate our system in Section
6. We give our conclusion in Section 7.

2 Background and Related Work

Personal file search systems are now common; Windows
Desktop Search [1], Google Desktop [9], Apple’s Spotlight
[15], and the open source project Beagle [5] are several ex-
amples. Each maintains an up-to-date index of the user’s
content, allowing them to quickly find matching content
based on a search query. However, as users tend to own
multiple devices, content is often spread across those de-
vices, and there is no unified interface from which to search
the user’s “cloud” of devices.

A distributed search system is one that allows a user to
query a set of devices from any one of those devices and
retrieve search results, identifying files and the devices on
which they are located. Each device is responsible for the
content it “owns” and therefore should maintain its own in-
dex. Such a system would need to have mechanisms for de-
vices to join and leave the system, to locate other devices
in the system and exchange messages with them, and to
distribute query requests and aggregate query results. The
distributed search system is similar to the aforementioned
desktop search systems in that each device can be seen as an
independent search entity, but the distributed system must
provide means to share the individual devices’ search re-
sults among all members of the system.

Various approaches have been applied to distributed
search thus far. For instance, some work has been done
on expanding the traditional distributed file system to ef-
fectively address needs of more consumer electronics de-
vices [12]. Others have approached the problem from the
other end, starting with the intermittently connected mo-
bile devices and trying to maintain or impose some overlay-
ing structure. Flinn and Anand proposed PAN-on-Demand,

a self-organizing overlay network scheme which utilizes
differing radio capabilities and device heterogeneity for
the ultimate goal of achieving excellent power usage [2].
Differing modes of membership have also been proposed
and some studies have focused on the cost differences be-
tween real-time discovery versus connection maintenance
[2]. Others have focused on the potential performance gains
of using multiple interfaces (e.g., Bluetooth and WiFi) si-
multaneously while operating at the application layer [3] or
by modifications at the transport layer [10].

Similarly, researchers have also proposed various ideas
for distributing data to multiple mobile devices [16] as well
as the potential performance benefits from caching data on a
device-by-device basis [11]. Consideration has been given
to the importance of how data is stored or distributed across
a p2p network in order to preserve locality of data while still
maintaining effective and scalable query throughput [13].
Other approaches have aggregated a user’s devices into a
single addressable virtual device focusing on higher level
“person-level routing” [6, 4], while others have focused on
lightweight development frameworks [14].

3 DSearch

An increasing amount of data is being stored on mobile
devices with growing storage capacity and functional spe-
cializations. Similarly, users now own an increasing number
of devices, dividing their content among them. As a result,
the ability to search through a user’s mobile data set be-
comes important. Unlike desktop search, however, search-
ing a network of mobile devices presents a different set of
constraints and challenges due to devices’ locational diver-
sity, varied connection capabilities, intermittent periods of
connectivity and device heterogeneity.

First, because of the limited computational capacities of
these devices, full fledged data indexing mechanisms are
not practical. Instead, there is a need for a light-weight
indexing infrastructure that can effectively target these de-
vices. Second, personal devices are by nature mobile, and
any system that searches among these devices needs to con-
sider intermittent availabilities and changes in the location
of devices. This calls for a technique for managing the per-
sonal area network (PAN) and identifying and maintaining
members of the group. These and other challenges make
distributed mobile search an interesting domain to work in.

We developed DSearch, a light-weight distributed search
application. DSearch manages devices leaving and joining
the network. We provide a basic infrastructure to search
content on all the connected devices and provide three
search index replication schemes to evaluate their impact
on query performance.

4 DSearch Implementation

DSearch has a Python client that runs on each device
in the PAN. Our system is platform independent and only
requires that Python and SQLite be installed on each de-
vice. The implementation operates on Mac OS X and Linux
based operating systems. One device acts as the coordina-
tor of the PAN. This device is assumed to be on most of
the time. Various settings control the type of replication
scheme, the port to listen on and the address of the coor-
dinator. When DSearch is started at a device, the system
registers with the coordinator and is assigned an identifi-
cation number, which is distributed to all other active mem-
bers along with other member information. The coordinator
keeps track of devices as they leave and rejoin the network.

The owner of the device interacts with DSearch through
a command-line interface. This interface allows the user to
specify directories to be indexed to satisfy future queries.
Queries are initiated through the command-line interface.
The DSearch architecture multiplexes the query to the other
members of the PAN depending on the replication scheme.

The DSearch implementation is divided into four cate-
gories: communication systems, data management, mem-
bership management, and searching infrastructure. The
communication system provides the networking interfaces
for DSearch. The data management system indexes local
data and stores it for future queries. The membership mod-
ule manages the dynamic joining and leaving of members in
the group. The search infrastructure implements the basic
query system as well as three search replication schemes.

Members Communication Data Searching
Membership ?
Manager
- (EE—
Query
Manager

Member
Rank

Data
Manager

Figure 1. DSearch High Level Design

4.1 Data Management

The Data Manager provides a mechanism to examine file
content and provides a search facility. Search systems usu-
ally use some variation of an inverted index, in which key-
words map to files containing those words. We take a sim-
ilar approach in DSearch. Since our system involves sev-

eral devices storing different content, our index maps key-
words to (memberlId, filepath) pairs, where a memberld
(assigned by the coordinator) identifies a member uniquely
within the system.

4.1.1 Index Manager

The IndexManager maintains a list of root directories that
are currently being indexed. On program startup, the In-
dexManager spawns a thread and scans through each of the
directories in the list recursively, looking for keywords and
adding mappings to the index. The user can add and remove
directories through the command-line interface, and the in-
dex is immediately updated in response to those commands.
In the absence of add and remove requests, the IndexMan-
ager thread will periodically wake up and refresh the index
by scanning all the root directories and repopulating the in-
dex structure.

4.1.2 Data Manager

The DataManager module implements the backend data
structure for our indexing mechanism using a SQLite3
database. The DataManager abstraction includes methods
to insert (word, file) matches as the indexer processes files.
In addition, the DataManager provides a method to con-
struct an XML message, encapsulating the index structure
it stores, to be sent to other members upon request. This
functionality is used by our index replication stragegies.

4.1.3 Index Shipping

In order to allow members to request and receive search in-
dex replicas, the IndexManager keeps a list of subscribers,
or members who have requested this member’s index.
Upon receiving a requestIndex message, the IndexMan-
ager adds the requester to the subscribers list if it is not al-
ready present and responds by sending an XML message
containing its index. From then on, whenever the mem-
ber updates its index (whether periodically or due to a user
command), it will re-send its index to all of its subscribers.
Though this is more costly than sending incremental in-
dex updates, it also greatly simplifies the message-passing
semantics, since each index update sent to a subscriber is
idempotent.

4.1.4 Consideration of Tradeoffs

As we designed our search and indexing mechanisms, some
clear tradeoffs presented themselves. First, there is a sig-
nificant computational cost involved in crawling through
directories and extracting keywords from files. Initially,
this cost is compulsory; the first time a directory is added
to the index, the content has never been seen before and

must be scanned and read completely. After the initial
scan, however, it is sufficient to only re-scan files that have
changed since the last scan. Our observation is by updat-
ing the index (with a full re-scan) frequently, we increase
the likelihood that searches have the most up-to-date view
of the indexed content, but with the computational cost in-
curred by frequent scans. Also, as the size of the total con-
tent being indexed on a mobile device grows, the database
queries involved in finding keyword matches become more
costly. It is at this point that shipping indexes to more
well-provisioned (e.g. 2GHz, 2GB RAM, AC power vs.
400MHz, 128MB RAM, battery power) devices becomes
attractive, since avoiding executing the query at the mobile
device will save time and power, especially when the rate of
queries is much higher than the rate of content update.

Second, there is a tradeoff between the size of the in-
dex and the robustness of the search. Currently, we keep a
count of the number of times each keyword appears in each
file, but we do not store any positional data (for example,
to allow searching for phrases). Whereas most personal file
search systems are first optimized for speed, a search sys-
tem intended for deployment on mobile devices must care-
fully consider how much storage to spend in return for bet-
ter query results. Given our simplistic indexing implemen-
tation, we defer a rigorous exploration of this tradeoff to
future work, though it is worth noting that our current in-
dexing mechanism requires a 924KB database to index the
content of 22 files totaling 26MB in size.

4.2 Membership Protocol

As a distributed search system, DSearch needs to man-
age its members in an efficient manner. One of the basic
assumptions that we made is that one of the members will
act as the coordinator and the other members will have to
register with the coordinator to be part of the system. Any
one of the members could be the coordinator, although it is
benefitial to have a usually on device assume this role. The
membership protocol is composed of two modules, Mem-
berhsip Manager and Pulse.

After one device is started as the coordinator for the sys-
tem, other devices can register with it. When the coordina-
tor receives a register request from a device, it looks up its
members list and assigns the new device a unique ID, which
is broadcast to the rest of the system along with the new de-
vice’s credentials. With this information, devices can set up
TCP connections to other members in the group.

Pulse is the activity manger of the system. It maintains
a current view of the system from a particular device rather
than the global state kept in Membership Manager. The ba-
sic mechanism used to achieve this is heartbeat messages
sent periodically from the members to the coordinator. A
member is allowed a few cycles of “grace” to send its heart-

beat to the coordinator before deemed inactive. This value,
set by the administrator of the system, determines how long
a coordinator waits before removing a member from the ac-
tive list, and hence it also determines the upper bound on
how long the active member list could be stale on any par-
ticular device. Setting the grace to be higher will give mem-
ber a longer duration to reconnect to the system with out
having to go through the registration process again. This
might be especially important in mobile devices where the
connections are likely to be intermittent. On the other hand,
setting the grace to be smaller gives a more current view of
the system at any given time.

Pulse propagates the active list to the members in one of
two modes. The default mode is event triggered, in which
the active list is distributed to members whenever an event
occurs on the coordinator that changes the current active
list; these are mainly leaves and joins. The other mode is an
on-demand mode in which a member receives the active list
only when needed, either to make caching decisions or to
send out messages. When a member receives the active list,
it also gets a lease time on the current active list, which is as
long as the grace. If the list is any older, a member will have
to request it again. Setting the lease to be equal to the grace
makes sense because that is also the earliest a coordinator
publishes the deletion of a device from the members list.

The on-demand mode is most efficient when the
join/leave rate is much higher than the rate of requests for
the active list. By requesting the active list only when
needed, members avoid getting unnecessary updates that
are potentially going to be out of date soon. On the other
hand, when there is low join/leave activity on the system,
event-triggered updates is more appropriate because the list
distributed is potentially going to be useful for a while.

4.3 Query Management

The Query Managemen module is responsible for dis-
tributing queries to all active members of the DSearch net-
work as well as merging and aggregating the individual
responses. With the default no-replication scheme, the
query is sent to each active member of the network. On
the other hand, when utilizing the centralized replication
scheme, a single query is sent to the coordinator. Lastly,
with the device-based replication scheme, queries are dis-
tributed strategically to exploit the more efficient process-
ing capability or lower network latency exhibited by cer-
tain members of the network. Regardless of the replication
scheme, every member of the current system is queried ei-
ther directly or indirectly and its response is aggregated.

As a side note, there is a querying capability to allow the
user to query only a specific device. This is useful in situ-
ations where the user is only interested in files residing on
a laptop or MP3 player rather than all devices. This feature

Coordinator

(1
/ (
RequestIndex

-+

Client

(slowest)

SendIndex

"

(2)
(1
) @

Figure 2. Querying in device-based replica-
tion mode

meshes as expected with the various replication schemes
as only the member responsible for the device specified is
queried.

Once all queried devices have responded, the results are
ranked for display. Our current ranking scheme orders the
results by (Number of Search Term(s) Found in File) / (Total
Number of Terms in File). More complex ranking schemes
are certainly feasible, but this metric proved simple and
useful enough to satisfy our current requirements. Once
the results have been ranked they are displayed to the user
through the console as Memberld — Filepath — Frequency
/ Total Terms.

4.4 Replication Schemes

Index replication is used in DSearch as a method for
improving availability and performance. DSearch repli-
cates search indexes of devices at various places in the
system. There are three modes of operation implemented
in DSearch. These modes are device-independent, which
means the selection affects only a particular device, and a
PAN might be composed of devices running different modes
of replication.

The first mode implements no replication. Each device
is responsible for its own index, and whenever a member
needs to query the contents of another member, it simply
sends a direct network message to it. This is the most obvi-
ous way of doing things, and its biggest advantage (besides
being simple) is that it always produces up-to-date search
results. On the other hand, it generates large amounts of net-
work traffic, and introduces search latency from the slower
devices.

The second mode is a coordinator replication mode. This
mode assumes a coordinator that has a higher network band-
width and storage capacity. If the coordinator is running
this mode, whenever a device registers, it is informed of

the mode and requested to ship its index to the coordinator.
This is potentially an expensive operation upfront. How-
ever this approach might make sense when the coordina-
tor is relatively faster and queries are done at a consistently
high rate. In these cases, the up-front cost will be amor-
tized quickly. Once a coordinator has all active members’
indexes, all searches are performed at the coordinator.

The local replication mode (Figure 2) is a more involved
replication scheme than the previous two and is imple-
mented using the Member Rank module. Whenever a de-
vice starts up, the user provides a hint about the memory
space available for locally caching other device indexes.
The Member Rank module sends messages to the active de-
vices requesting what indexes they already have cached. It
then uses the round trip time to rank the various members
according to the latency. Because DSearch waits for all de-
vices to respond to queries (either with results or some form
of notification of a process crash, such as a socket error or
timeout), the entire query execution time is as slow as the
slowest of the members. So, ideally a member benefits most
by replicating the slowest of the devices locally.

However, this is complicated by two issues. First, there
is a limit on how many devices each member can replicate,
and second there might be faster devices that have already
replicated slower devices’ indexes, so that it might be faster
to use those existing replicas than creating a new one, and
instead replicate some other device’s index. This replication
analysis problem is an NP-complete problem that is most
similar to the Weighted Directed Dominating Set problem
(Section 5). DSearch implements an approximation algo-
rithm which puts into consideration these various factors.
The algorithm first significantly prunes the search domain
and then greedily suggests the best devices to replicate at
each step.

A replication mechanism tailored to the capabilities of
individual devices is ideal in a heterogeneous system of de-
vices in which various members have different storage, la-
tency and bandwidth limitations, and has been shown to be
very effective [2]. In those cases, local replication tries to
find the optimal replication scheme given the current state
of the system. It is also interesting to note that under the
assumptions for the coordinator replication mode, in which
the central device is faster and has plenty of storage space,
local replication mode converges to the coordinator replica-
tion mode when we are able to replicate all members’ in-
dexes locally. By paying a limited upfront cost, a device
can minimize its query response time, and upfront cost will
be amortized quickly.

In any replication system, it is important to consider con-
sistency among replicas. DSearch uses a primary-based
consistency in which one device owns a definitive copy of
its own index. Also, we notice that DSearch has a unique
feature in that only the owner of an index ever writes to

Figure 3. Basic DSearch Graphical Represen-
tation

it, and all other members simply read from it. Because we
have an authoritative replica, implementing consistency is
straightforward. We achieve consistency using subscrip-
tions to the owner of a copy. Whenever a device requests
some other member’s index, it also subscribes to be notified
about any changes in the index. So, after a device re-crawls
its folders, it sends its index to all its subscribers. The win-
dow of stale indices is then reduced to the time it takes for
a network update message from the source to reach sub-
scribers. We believe this is sufficient to get current results
in a personal area network.

S Graphical Model

Selecting the optimal replica to store locally is essen-
tial for minimizing query run time. The objective is to se-
lect the replica(s) that will maximize the performance gains.
Our current implementation uses various techniques such as
graph pruning to select which search indexes to store. We
present a graphical model that reduces the selection prob-
lem to a directed, weighted dominating set problem.

Given a graph, each device must select the optimal
replica to store locally. We specify a constant k that deter-
mines the maximum number of replicas that can be cached,
where k is representative of the device’s memory capacity.
When a new member joins the network, it subscribes to at
most k other devices and receives their search indexes. Each
device makes this selection through a calibration technique
that ranks the time to get to every device in the PAN and
also accounts for other search indexes already replicated to
other nodes.

We present a graphical model to assist in solving of this
optimization problem. When a device joins the PAN, it cre-
ates a graphical representation of the network. Before the
graph can be created, all the members of the PAN are ranked

@

POOO
HOOE

Figure 4. Same as Figure 3, but in this exam-
ple, C stores a replica of D’s index.

based on query latency. Given four members {A, B,C, D}
with latency costs 1 < C'(4) < C(B) < C(C) < C(D)
and a new node Z with a cost of zero, we create the graph
seen in Figure 3. This graph assumes that no replicas have
been sent up to this point in time.

The graph is divided into three columns of nodes. The
left column contains the new member Z, which has a di-
rected edge to {Za, Zb, Zc, Zd}. These edges represent
device Z’s ability to send a query to node X through node
Zx. The right column represents the possible replicas that
can be stored locally. Our construction only allows k of
these nodes can be selected at a time. An edge is added
from node Zx to node Y if X has Y’s search index stored
locally.

To select the optimal replica, we solve the directed,
weighted dominating set optimization problem. A domi-
nating set is a set of nodes in the graph such that every node
in the graph is either in the dominating set or is connected
to a node in the dominating set. For a directed graph, this
implies that if A is in the set and there is an edge from A
to B, both A and B are covered; however, if the edges goes
from B to A, B is not covered by the set. We also must re-
duce the total cost of the dominating set, which corresponds
to the query time. Notice that Z is always added to the set
since it has no cost and the cost to store a replica is less than
the cost to send a query.

For the case of £ = 0 in Figure 3, no replicas can be
stored and a query must be sent to each device. The domi-
nating set for this network contains {Z, Za, Zb, Zc, Zd}.

For the case of £k = 1 in Figure 3, since Zd has the
highest cost, it is best to choose the dominating set of {Z,
Za, Zb, Zc, D}.

For the case of £k = 1 in Figure 4 where C already has
D’s search index stored locally, it is not optimal to store
D’s search index since it can be accessed more efficiently
through C. Therefore, the optimal set is {Z, Za, Zc¢, B}.

Note that storing C' is not optimal since node D would then
need to be queried, adding the highest possible cost.

The dominating set decision problem is NP-complete
[7, 8]. Instead of solving for the optimal solution, we ap-
ply approximation techniques that greedily select the high-
est cost, un-covered replicas to store. This algorithm runs
in O(N) time, where N is the number of members in the
PAN.

6 Evaluation
6.1 Evaluation Methodology

To analyze DSearch, we preformed a set of experi-
ments to compare the performance of the three replication
schemes. We deployed DSearch on multiple Linux and Mac
OS X desktops and laptops as well as on one Nokia N800
handheld device. The desktops and laptops had processors
clocked from 1.5-2 GHz and had 1-2 GB of main memory
compared to the N800’s 400 MHz processor and 128 MB of
main memory. We measured the total query execution time,
defined as the time for all query responses to be received
and aggregated at the querying device.

We performed the following tests. First, we measured
the query performance as the number of members in the
PAN increased while no data was indexed at each device.
This test measures how the network performance of the sys-
tem scales as new members join. We also collected network
traffic to measure the growth of the system’s bandwidth con-
sumption as the PAN size increases. Second, we gathered
performance data for the three replication schemes. We
tested the no-replication method, the centralized approach
and the device-based scheme and compared their perfor-
mance. For each of these tests, we indexed a test set of 22
files that included MP3, text and PDF files totaling 26 MB
in size and requiring an 924KB database. The handheld had
a smaller set of files (approximately 688KB) since it takes
orders of magnitude longer to index data with the slower
processor (e.g. 20 minutes vs. 30 seconds for the same
data).

6.2 DSearch Query Performance

First, we analyzed how the DSearch query architecture
scaled as devices joined the PAN without any data indexed
on the device. Querying empty databases provides us with
a bound on the query time and provides insight into the
networking costs of a distributed system. When the PAN
did not include the handheld device, the query times were
extremely small (e.g., 0.008s) and negligible due to the
fast interconnects of the LAN. When the handheld was in-
cluded, query times increased to approximately 0.1 seconds,

1.6
Replication Scheme Performance
1.4

1.2

Query Time (s)

Devices
(Device 6 = Handheld)
None -#Device-Based[k=1] —s—Centralized

Figure 5. Replication Scheme Performance

demonstrating the impact of wireless networks on query
performance.

Next, we indexed the data stored on each device and ex-
ecuted queries for the three replication schemes. Figure 5
shows the performance plots for the three designs. The ba-
sic, no-replication method issues queries to each device in
parallel. As more devices are added, the query time in-
creases because of the network latency and extra time re-
quired to aggregate queries from multiple sources. Note
that the query performance remains almost constant when
the handheld is not included and when more than one de-
vice is in the PAN. Query performance does not vary since
each query is issued in parallel and the devices have simi-
lar processors. When the handheld joins the PAN, the query
time increases by a factor of seven, due to the N800’s slower
processor and large wireless network latency.

The centralized and device-based replication schemes
improve the overall query performance when the handheld
is included in the PAN. For the centralized approach, a sin-
gle query is sent to the coordinator, which then searches in
its database for all matching files from throughout the PAN.
Since the coordinator contains the aggregate databases from
all the devices in the PAN, searching at the coordinator
is comparatively slower than the no-replication method.
Therefore, for queries not including the handheld, the basic
approach outperforms the centralized method, where query
time increases almost linearly with the number of devices.
However, the centralized method more efficiently processes
queries that include the handheld since there is no need to
directly query the slower device. Furthermore, the delay
from sending indexes is amortized over time due to the im-
proved query performance.

The device-based replication scheme improves on the
weaknesses of the centralized model. A drawback of the
centralized method is that query time grows linearly with
the number of devices, since more data must be searched
at the coordinator. We observed from the no-replication

Per-Query Total Network Traffic

Network Traffic (KB)

Devices

None —#Centraliezed -#-Device-Based [k=1]

Figure 6. Network Traffic Generated

model that query time remains constant when multiple, sim-
ilar performing devices are queried in parallel. Consider-
ing this observation, the device-based replication scheme
stores a subset of the replicas locally. From Figure 5, we
find that the coordinator and device-based methods perform
similarly when up to three members are in the PAN, but
as more members are added, the device-based replication
model maintains a constant performance in contrast to the
worsening centralized method. Our observations also hold
when the handheld is included in the PAN.

6.3 Alternative Metrics

Shipping search indexes from device to device to im-
prove query performance utilizes more network bandwidth
than the no-replication model. When we transfer a search
index, we send an XML message containing all the rele-
vant file information stored in the database. For our tests,
this message was approximately 140 KB in contrast to ap-
proximately 4 KB of data to send and receive query re-
sponses from each node with no replication for the tested
query. Since devices are often left on for long durations
of time, we believe sending the larger data stream over pe-
riod of time is an acceptable tradeoff for improved query
performance. Figure 6 shows the network traffic generated
for each replication scheme as the number of devices in the
PAN increases from 1 to 6.

7 Conclusion

We have presented DSearch, a system which enables
users to search files distributed across their set of personal
devices. We developed three different index replication
mechanisms and evaluated their performance, showing that
careful index replication can improve query performance
and scalability. We feel that DSearch will be a useful frame-

work for future endeavors in managing content in many per-
sonal distributed networks with mobile devices.

References

[1] Windows search. http://www.microsoft.com/windows/desktopsearch/.

[2] M. Anand and J. Flinn. Pan-on-demand: Building self-
organizing wpans for better power management. Technical
report, 2006.

[3] G. Ananthanarayanan, V. N. Padmanabhan, L. Ravindranath,
and C. A. Thekkath. Combine: leveraging the power of wire-
less peers through collaborative downloading. In MobiSys
"07: Proceedings of the 5th international conference on Mo-
bile systems, applications and services, pages 286-298, New
York, NY, USA, 2007. ACM.

[4] G. Appenzeller, K. Lai, P. Maniatis, M. Roussopoulos,
E. Swierk, X. Zhao, and M. Baker. The mobile people ar-
chitecture. Technical Report CSL-TR-99-777, 1999.

[5] Main page - beagle. http://beagle-project.org.

[6] C. Carter and R. Kravets. User devices cooperating to sup-
port resource aggregation. In Mobile Computing Systems and
Applications, 2002. Proceedings Fourth IEEE Workshop on,
pages 59-69, 2002.

[71 S. A. Cook. The complexity of theorem-proving procedures.
In STOC ’71: Proceedings of the third annual ACM sym-
posium on Theory of computing, pages 151-158, New York,
NY, USA, 1971. ACM Press.

[8] M. Garey and D. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman.

[9] Google desktop. http://desktop.google.com.

[10] K.-H. Kim and K. G. Shin. Improving tcp performance
over wireless networks with collaborative multi-homed mo-
bile hosts. In MobiSys 05, pages 107-120, New York, NY,
USA, 2005. ACM.

[11] C. Lindemann and O. P. Waldhorst. A distributed search
service for peer-to-peer file sharing in mobile applications.
In P2P ’02: Proceedings of the Second International Con-
ference on Peer-to-Peer Computing, Washington, DC, USA,
2002. IEEE Computer Society.

[12] D. Peek and J. Flinn. Ensemblue: integrating distributed
storage and consumer electronics. In OSDI ’06: Proceed-
ings of the 7th symposium on Operating systems design and
implementation, pages 219-232, Berkeley, CA, USA, 2006.
USENIX Association.

[13] T. Scholl, B. Bauer, B. Gufler, R. Kuntschke, D. Weber,
A. Reiser, and A. Kemper. Hisbase: histogram-based p2p
main memory data management. In VLDB 07, pages 1394—
1397. VLDB Endowment, 2007.

[14] K. Senthivel, S. Kalasapur, and M. Kumar. Person: A frame-
work for service overlay network in pervasive environments.
pages 671-682. 2007.

[15] Spotlight overview. Technical Report 2006-04-04, Apple
Corp., Cupertino, CA, 2006.

[16] P. Xuan, S. Sen, O. Gonzalez, J. Fernandez, and K. Ramam-
ritham. Broadcast on demand: efficient and timely dissemi-
nation of data in mobile environments. In Real-Time Technol-
ogy and Applications Symposium, 1997. Proceedings., Third
IEEF, pages 38-48, 1997.

