Intentional Networking: Opportunistic Exploitation of
Mobile Network Diversity

Brett D. Higgins*, Azarias Reda*, Timur Alperovich#, Jason Flinn+,

T.J. Giulit, Brian Noble*, and David Watson*

University of Michigan*

ABSTRACT

Mobile devices face a diverse and dynamic set of networking o

tions. Using those options to the fullest requires knowded§
application intent. This paper describes Intentional Nating,
a simple but powerful mechanism for handling network diwers
Applications supply a declarative label for network transsions,
and the system matches transmissions to the most appreprétt
work. The system may also defer and re-order opportunisgtitst
missions subject to application-supplied mutual exclusiod or-
dering constraints. We have modified three applicationss® la-
tentional Networking: BlueFS, a distributed file system er-
vasive computing, Mozilla’s Thunderbird e-mail clientdaa ve-
hicular participatory sensing application. We evaluatéxe per-
formance of these applications using measurements olotdige
driving a vehicle through WiFi and cellular 3G network coage.

Compared to an idealized solution that makes optimal usdlof a

aggregated available networks but that lacks knowledgeppfia

cation intent, Intentional Networking improves the latgiof inter-

active messages from 48% to 13x, while adding no more than
throughput overhead.

General Terms
Performance

Categories and Subject Descriptors

D.4.4 [Operating Systems]: Communications Managementet-
work communicationD.4.8 [Operating Systems]: Performance

Keywords

Wireless network selection, application-aware netwagkin

1. INTRODUCTION

Mobile devices face a diverse, dynamic array of networkipg o
tions. Increasingly, these options have a wide variety i@fgths
and weaknesses. As a result, there is no single “best chaice
all cases, and such diversity of infrastructure is both dlehge

”

Permission to make digital or hard copies of all or part of thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

MobiCom’10,September 20—24, 2010, Chicago, lllinois, USA.
Copyright 2010 ACM 978-1-4503-0181-7/10/09 ...$10.00.

Ford Motor Company?

and an opportunity. The challenge lies in managing thesegihg
options to best meet each application’s needs, which theeasse
vary with time. However, by doing so, we can provide significa
benefits to applications, exploiting multiple networks comently
and planning future transmissions intelligently. Thisastgularly
valuable for applications with a mix of on-demand amportunis-
tic network activity—messages that still have value even i¢defd
for a time.

Unfortunately, current approaches to this problem areffiasu
cient. At one extreme, the operating system or a middlevarer|
makes all routing and interface decisions on behalf of apfibns,
in a one-size-fits-all solution [6, 18]. However, becausedhtities
that make these decisions are ignorant of the intent of tipd-ap
cations that are using the network, they often miss oppiitsn
for optimization. Worse, in an effort to preserve currentred-
network semantics, persistent connections generally pristuck”
on wide-area (but low-performing) networks. At the othetreme,
the system makes applications aware of network changespgmgsex

7%ing the low-level details directly to them [7, 34], and applions

must explicitly choose among the available options. Thigagch
is expressive, but neither simple nor elegant; managingiphel
wireless networks unnecessarily complicates the taskeo&fipli-
cation writer.

Intentional Networkingoccupies the middle ground between
these two extremes. In our approach, the system manages most
of the messy details of discovering and characterizing |zt
network options. Applications provide hints about trafferrean-
tics using a small number of declaratilabelsto express intent.
For instance, a label might differentiate between foregdtraffic
(e.g., a GUI-initiated request for which a user is waitingyl dack-
ground traffic (e.g., an opportunistic message that neetaygen
at any particular time). The system then matches netwofkdta
available interfaces in an informed way.

Application data sent using different networks may arriué af
order. Constraining data delivery to follow in-order TC#®is se-
mantics could dramatically limit the benefit seen by appiares,
since short, interactive messages would queue behind ali-pr
ous opportunistic transfers. Thus, Intentional Netwagkallows
applications to express relaxed ordering constraints &ia dle-
livery. The scheduling constraints for mobile network usage
similar to synchronization primitives used by threads ingron a
multi-processor. Based on this observation, we providepvimi-
tives: Isolated Reliable Ordered Bytestreams (IROBs) ctvipiro-
vide the mutual exclusion synchronization of mutex locks] ar-
dering constraints, which provide the must-happen-befpnehro-
nization of condition variables.

Finally, there are times when none of the currently avadatst-
work options are appropriate and network traffic is best dlete

For this scenario, Intentional Networking supportthank model

of delayed execution in which the application registers ltbbaak
function to be invoked when circumstances change so tha-it b
comes appropriate to transmit data with the specified |ati@inks

let applications coalesce, rather than defer, redundawomnke mes-
sages; for instance, an e-mail client that periodicallyckdor new
mail can send only one such request when an appropriate rietwo
becomes available.

The contribution of our work comes from defining simple and
powerful abstractions for exposing the presence of maltipire-
less networks to applications. Our work does not define a nvew 0
the-wire protocol, but instead provides a portable, useellim-
plementation that routes traffic over appropriate netwéksed on
application hints. We show that, for many applications liapgion-
aware network selection outperforms even idealized aggi@y
strategies that lack knowledge of application intent.

We have modified two existing applications to use Intentiona
Networking: BlueFS [32], a file system for pervasive compgti
and the Mozilla Thunderbird [27] open-source email cliehte
have also created a new automotive participatory sensiplicap
tion that uses our API. We evaluated the performance of thggk-
cations using measurements obtained by driving a vehicteitiin
WiFi and cellular 3G network coverage. Compared to an ideal-
ized solution that makes optimal use of the aggregatedablail
networks but lacks knowledge of application intent, ourutess
show that Intentional Networking improves the latency dérac-
tive messages from 48% to 13x for our three applicationsjevhi
adding no more than 7% throughput overhead.

2. RELATED WORK

There is a large body of work that seeks to route network traffi
over multiple interfaces. Prior work largely falls into ooé two
categoriesapplication-obliviousin which the network over which
data is sent is chosen based on system-wide goals such as maxi
mizing throughput and without consideration of applicatiotent,
andapplication-alonein which each application must manage the
details of selecting among multiple networks on its own amal t
system’s role is only to expose the details of possible ogtio the
application.

Virtual WiFi [7] is one application-alone solution. It viralizes a
device’s wireless interface, fooling applications intdi&é&ng the
device is connected simultaneously to different APs onecifit
channels. This is a step in the right direction, becausecdsvi
can now exploit all available connectivity in their vicipit Un-
fortunately, Virtual WiFi places the burden of access paielec-
tion entirely on the application. In contrast, IntentioNetworking
presents applications and users with a single unchangitvgorie
interface that accepts declarative intent.

Application-oblivious systems are more numerous. FatVA# [
presents an infrastructure similar to that of Virtual WiBut oper-
ates only within a single layer of an overlay network, andda-c
cerned only with maximizing overall throughput, withoutnoern
for other application-level preferences. Other systenechtthe
bandwidth aggregation problem by designing new multi-piths-
port protocols to replace TCP, such as R-MTP [24], pTCP [15],
mTCP [49], and SCTP [45]. SCTP also supports multi-stregmin
of independent byte streams; in contrast, Intentional Mekimg
allows applications to specify ordering and atomicity dosigts
over data sent to a destination computer. Multi-path trartdpas
also been built into the kernel socket-handling functiars above
the transport layer [39]. Chebrolu et al. [8] use a modifiett ne
work layer at the mobile host and at a remote proxy to hide the
use of multiple networks, and the resulting reordering afkess,

from the transport and application layers. Though all ofabeve
application-oblivious systems are simple for applicasida use,
they only focus on throughput maximization and cannot taie i
account other application-specific or request-specifidsgaiach as
minimizing latency.

In contrast to application-oblivious and applicationrecstrate-
gies, Intentional Networking splits the burden of netwaelestion
among applications and the system. Applications disclass-q
itative hints about their intentions in using the networkdahe
system reasons about how traffic labeled with those hintsldhe
mapped to specific networks based on their current charstitsr

Rather than target throughput maximization, Wiffler [3] opp
tunistically routes data over WiFi to minimize cellular gsa Oth-
ers [8, 38, 48] have argued that throughput maximizationois n
the only goal of interest to mobile applications and useng, that
the ability to specify network usage policies on a per-aggion
basis would be useful. We differ from these prior works in two
ways. First, we argue that the application, not the usenllsheet
policies. Application network usage patterns may changekéu
and the proper choice of policy changes likewise; it wouldcgl
too great a burden on the user to understand their applitsitbe-
havior and constantly update the policies. Second, we p&po
implement, and evaluate a specific mechanism for applicatio
set fine-grained policies by describing the intent of eadiwark
message.

The push toward ubiquitous computing makes automaticcervi
discovery in new environments more important than ever.[EX}
isting work, however, has focused more on enabling apjdinat
level services [9, 13, 43] than on choosing and managingershiv
set of network connections from an application’s point i

Several systems seek to allow clients of one wireless servic
provider to access foreign wireless hotspots when roansnd 1,

25, 40] or between public and private networks [26]. Our wisrk
complementary, since users must find and associate to assacce
point before negotiating such roaming agreements. Thigicger
discovery is similarly critical for grassroots wirelesdleactive ini-
tiatives [4, 35, 42].

Contact Networking [6] hides the differences between local
and remote communication from users. All communication ap-
pears to be local—like a direct Bluetooth connection betwize
devices—even if infrastructure such as the Internet isaigtin-
volved. Like us, the authors recognize that mobile devigpeally
have several heterogeneous wireless radios at their dispGen-
tact Networking is also conscious of the properties of défe link
layers. Their primary focus, however, is on neighbor disrgy
name resolution, and (ultimately) the preservation of @gfibn-
level sessions in the face of user mobility. Our work does ¢iowh-
mon ground with the idea that all network connectivity opare
not equivalent and the operating system should dynamiealygn
data flows to the most appropriate link.

Zhao et al. [50] attack problems similar to those addressed b
Contact Networking. Their work lies firmly within the framerk
of Mobile IP [37] as well. The user's Home Agent is required to
arbitrate the routing of various data flows. Further, amilans
must explicitly bind a data flow to a specific interface thrbulgeir
SO0_BINDTODEVICE socket option. We propose a decentralized so-
lution and envision the operating system automaticallygagsg
flows to the optimal interface, aided at most by simple hintsnf
applications.

Much recent work has argued that the multiple network connec
tivity options available to today’s mobile devices are asblag, not
a curse. Johansson et al. [17], among others, show how Bitieto
radios are often preferable to IEEE 802.11 for short-range;

power communication. Bahl et al. [2] illustrate scenaridseve
multiple radios can help devices save energy, enhance dhaéir
communication capacity, make wireless AP handoff more seam
less, and better tolerate wireless link problems. Draves.d1.0]
show how overall throughput can be increased for multigadi
nodes in mesh networks by dynamically choosing the “best” ou
bound link when forwarding a given packet. Stemm and Katk [44
recognize the hierarchical nature of overlapping wirelestsvorks.
Much like cache hierarchies in computer architecture, iplalt
wireless networks commonly cover one spot, with the utiléyg.,
bandwidth) of a network usually inversely proportional t® ¢ov-
erage radius.

Labels are partially inspired by the use of hints to guide @ow
management decisions in STPM [1]. Both projects share thé go
of having applications disclose a minimal amount of infotioato
guide resource management decisions. Yet, the domainsithwh
these hints are applied are very different. STPM sets vdgele
network power management modes, while Intentional Netiagrk
changes the scheduling and routing of network messages.

3. DESIGN GOALS

We next list the major goals that drove the design and impieme
tation of Intentional Networking.

3.1 Separate concerns

Our design is guided by the classic principle of separatolgp
and mechanism. Applications are best situated to deterth@nac-
tual intent in using the network, e.g., whether a particat@ssage
is driven by interactive use or whether it is backgroundficafT his
intent represents the policy for how data should be trariethit

On the other hand, the operating system or a middlewareryibra
is best positioned to provide a common mechanism to implémen
the specified policies. A common mechanism makes deploying
new applications that use multiple mobile networks cornsibly
easier since each application must only provide hints asstimi
tent. The details of handling multiple heterogeneous atetnnit-
tent mobile networks is encapsulated at lower layers of ff&e s
tem. A common mechanism can also aggregate heterogeneaus da
transmissions from multiple applications.

Thus, Intentional Networking is designed to have a separadf
concerns in which applications disclose policy decisionsalbel-
ing the data they transmit and a lower layer of the systemempl
ments the mechanism that enacts the policy by mapping déta to
networks that best match the labels at the time the datarisrtri-
ted.

3.2 BeQualitative

Our design is also guided by the classic principle of keepiireg
interface as simple as possible, without unduly sacrifiérgres-
siveness. This has resulted in a minimalist, qualitativerface.
For instance, we could have required each application tatie
detailed quantitative specifications of the charactessif the traf-
fic it expects to generate, as well as the quality of servieg ith
requires. However, such a complex interface would placera co
siderable burden on the application programmer, that céfody
tuning for each possible workload, making it unlikely thla¢ tca-
sual developer would use our system.

This principle led to several decisions. Rather than useatifaa
tive specifications, applications express their intergtiosing only
qualitative attributes over the data; i.e., whether a trassion will
be small or large, and whether itis interactive or backgebuaffic.
We do not mandate what constitutes “small” vs “large”. We\all
the application to use these labels as it sees fit. While we may

Possible values
Foreground vs. Backgroun
Small vs. Large

Properties
Interactivity
Size

Table 1. Intentional Networking label properties

eventually add more attributes to our labels as our expegivith
the system grows, the current interface is sufficiently egpive to
handle several complex applications, as discussed indpegti

3.3 Embrace Concurrency and Failure

Our original goal for Intentional Networking was to provide
single-socket abstraction that assigns labeled traffibeganost ap-
propriate networking option. However, single-socket setica re-
quire data to be delivered in-order for TCP connections. ddnf
nately, this severely limits the set of optimizations pbksiwhen
using multiple networks simultaneously.

After several false starts, it became clear to us that gaiom f
one to many networks is akin to the transition from single#ded
programming to multi-threaded programming. Some inteiilegs
of execution orders are very useful and desirable, but stlead to
incorrect computations.

Just as concurrent systems include mechanisms to allowadhe p
grammer to rule out incorrect orderings, we added syncheoni
tion abstractions to express both atomicity and happeferdeon-
straints. These mechanisms are both simple and expresside,
are familiar concepts to programmers with training in monktyle
concurrency control.

In addition to expressing such ordering constraints, we als
needed mechanisms to deal with partial failure. There anedi
when some traffic would be ill-served by any available traissm
sion alternative. Therefore, we provided a callback meigman-
similar to exceptions or continuations—to handle delayaddmis-
sions or disconnections.

4. ABSTRACTIONSAND INTERFACE

In this section, we describe the Intentional Networking ap-
plication interface. We first describe the basic abstrastiin
the interface. Applications uskabels to communicate their in-
tent. These are meaningful in the contextrofilti-socketsand
are expressed over message units calR@Bs (Isolated Reliable
Ordered Bytestreams)IROBs provide atomicity (mutual exclu-
sion); applications may also specifydering constraintsamong
IROBs. When operations must be deferred, applications egig+
ter thunksto resume them. After describing these fundamental ab-
stractions, we show the Intentional Networking API in Sect.6.

4.1 Labels

The label is the principal abstraction available to appiorss. It
is the mechanism by which applications declare the progedf
any particular network message. Labels are system-definaiit g
tative properties of the message. Our present implementatip-
ports only four labels across two dimensions, interagtigitd size,
as shown in Table 1. A message’s label is set to foreground if a
user-visible event is waiting for the response. A messagpadk-
ground if its timely delivery is not critical to correct behar. For
example, many hints [46] need not be sent. The small label de-
scribes messages that are latency-dominated such as-pauiet
RPCs, while the large label describes other messages stichsas
containing multimedia data. We expect to add further dirierss
and label values as our experience with applications gr¥es the

eventual number of possible label values will remain smaltes
interface simplicity is one of our main design goals.

4.2 Multi-Sockets

Labels are used in conjunction with label-aware socketscalle
such socketsnulti-sockets Intuitively, a multi-socket multiplexes
several different labels across a single virtual socket.tk® most
part, multi-sockets behave exactly as normal ones do. Hemvev
multi-socket send calls take a label that is used to assigkepa
to the best possible interface. Note that the sender is alwzy
entity responsible for assigning labels, and as a conseguescv
does not require a label. While we could imagine using one to
implement a filtered receive, we have not had to do so for any of
our applications so far.

A multi-socket is a single logical connection that dynartjcia-
stantiates and uses actual TCP connections over one or ingse p
ical interfaces. Multi-sockets provide encapsulatioreythide the
presence of multiple network interfaces, routes, and cctiomes
from applications. Multi-sockets also encapsulate temtsiliscon-
nections caused by events such as passing through a widelagds
zone. Applications specify only labels, which are used keIt
tentional Networking traffic manager to choose the rightuoek
over which to send data. Applications may optionally be fredi
about network unavailability on jger-label not per-network basis,
through the use of thunks, which are deferred executionremvi
ments that execute when an event occurs. Thunks are desanibe
more detail in Section 4.5.

Like TCP sockets, multi-sockets support a reliable dejivads-
straction. However, multi-sockets relax TCP’s orderingstoaints
by allowing bytes to be reordered subject to applicatioeetfied
mutual exclusion and ordering constraints, as describéaeimext
two sections.

4.3 IROBs

An IROB is the unit of network transmission to which labels ar
applied. The multi-socket interface guarantees that eREBI is
received atomically; i.e., the bytes of the IROB are produie
order without intervening bytes from other network transsinns.
However, individual IROBs may be reordered with respectrie o
another. In other words, an IROB sent after a previously 508
may be seen first by the application reading data from theviece
multi-socket. Yet, bytes from the two IROBs will never beenrt
mingled. IROBs thus provideutual exclusiolin the same manner
that locks provide mutual exclusion for threads in a mutgtded
program.

4.4 Ordering constraints

Since some applications requicedering constraintsbetween
IROBSs, the multi-socket interface supports the declanatibsuch
constraints. Each multi-socket assigns a unique, moncatyiin-
creasing identifier to each IROB. When creating a new IROB, th
application may specify the identifiers of any IROB that minist
received prior to receiving the one being created. Ordeciog-
straints may only specify IROBs that have a lower uniquetidiery
this guarantees that such constraints are deadlock freglicap
tions that desire the sequential byte stream of a TCP sopkeifg
that each IROB must be received after the one with the nex@dow
identifier; our API provides default send calls with this beior
for simplicity. However, many of our applications have leoson-
straints; for instance, the BlueFS file system client respiithat
asynchronous writes be ordered sequentially with respecnte
another, but allows them to be arbitrarily ordered with exgpto
all other RPC types. The ordering constraints in multi-stslare

similar to those provided by condition variables for thread a
multi-threaded program.

45 Thunks

It is possible that a labeled IROB may not have any “appropri-
ate” network available at the time it is sent. For examplesider
an opportunistic bulk transfer initiated when only a lowabwidth
link is available. Such a transfer would preferably be doha a
later time, when a high-bandwidth link is encountered. W&
tively, the mobile computer may be in a wireless dead-zorith w
no connectivity.

Naturally, we do not want applications to have to poll fortsac
link. We also do not want applications to have to establish cen-
nections after short periods of transient disconnectionweéter, in
keeping with our design goals, we want to expose such events t
applications when appropriate.

In our interface, the operations that create IROBs take an op
tional thunkargument, which is a function/argument pair that will
be used to inform the application about IROBs that cannotibe i
mediately sent due to the lack of an appropriate network. Ware
IROB is deferred, the call that takes the thunk argumentmeta
special return code. Later, when data with the specified lcdne
next be transferred, the library notifies the applicationchiling
the thunk function with the specified arguments. The owriprsh
of the argument’s resources passes with the thunk, and tididra
must take responsibility for them. Thunks may be cancelem—f
example, if a subsequesend would invalidate a prior thunked
one.

Thunks are useful for applications that send periodic ngessa
such as checking for new e-mail. Buffering redundant messag
during disconnected periods and sending them all laterearlg
undesirable. Instead, such applications register a thartké send
and are notified when an appropriate network is availablee Th
thunk handler sends only one polling request, thereby priege
valuable network bandwidth.

4.6 API

Table 2 shows the most important functions in the Intentiona
Networking API. Thems_socket call creates a new multi-socket,
and thems_connect call connects it to a remote endpoint, which is
specified in the same way as for thennect system call. Thus, the
only difference betweems_connect and the standardonnect
system call is that the first argument is a multi-socket.

Typically, we modify an application by replacing the sogloen-
nect, listen, and accept calls with theis_* counterparts. Ap-
plications create a new IROB througis_begin_irob, passing
a label that describes the atomic message, as well as any or-
dering constraints. This function also takes an optionahkh
and data to be passed to the thunk function. The application
then callsms_irob_send to specify the data sent as part of the
IROB,; typically, we perform a one-to-one replacementsehd
to ms_irob_send calls. The application usess_end_irob to
tell the library that no more data will be sent for the IROB.€Th
ms_send call is provided as a convenience; it creates a new IROB
that depends on all previous IROBs, specifies the data thmat co
prises the IROB, and ends the IROB. If an application uses jus
ms_send calls, it will provide the behavior of TCP with labels,
though no reordering will occur.

Thems_recv call returns a label. This is useful for server appli-
cations that wish to reply to a client request using the sabell
provided by the client for the original request. For ins@nan
IMAP server may wish to reply to client background requests w
a background label and reply to foreground requests withre: fo

Function Arguments and return values

ms_end_irob (IN irob_id);

ms_recv

ms_socket (IN family, IN type, IN protocol, OUT multi-socket);
ms_begin_irob (IN multi-socket, IN label, IN dependencies, IN thunk, IN thunk_data, OUT irob_id);
ms_irob_send (IN irob_id, IN buf, IN length, IN flags, OUT bytes_sent);

ms_send (IN multi-socket, IN buffer, IN length, IN flags, IN label,
IN thunk, IN thunk_data, OUT bytes_sent);
(IN multi-socket, IN buffer, IN length, IN flags, OUT label, OUT bytes_rcvd);

This figure shows the Intentional Networking API for creating and using multi-sockets. Besides the functions shown, multi-sockets also support

the traditional socket functions; e.g., accept, select, and setsockopt.

Table 2: Intentional Networking API

ground label. Although not shown in Table 2, multi-socketsaet
similar functions to those provided by traditional socketeh as
listen, accept, select, andsetsockopt.

4.7 Discussion

Itis useful to consider what an application would need tojat®
on its own to achieve application-aware functionality eglént to
Intentional Networking. First, an application would needdis-
cover new network options, open sockets for each networiopt
and monitor the connection quality of each network in ordede-
cide which network to use for each transmission. To pripgithn-
demand traffic, the application might create multiple st&keer
network, then use a platform-specific method to prioritizadfic
from one socket over the other. The application would alsmirie
stripe traffic across connections to improve throughpwgntman-
age the inevitable re-ordering of data that arises from striping.
Finally, the application might poll to achieve the functdity of
thunks that allows traffic to be altered or dropped if an appede
network is not currently available.

In contrast, the Intentional Networking abstraction makwgs
functionality the responsibility of the lower layer of theotrile
system, not the application. The application need only taigao
its traffic with the simple API in Table 2 to achieve the sammecfu
tionality. While strategies that ignore intent can be innpéated
without application modification, our evaluation showstteach
application-oblivious strategies substantially undefigren Inten-
tional Networking.

5. ARCHITECTURE

When we began our work, we faced a decision about whether

to implement Intentional Networking at user-level or in #enel.
Good reasons exist for both choices. A kernel implementatan
improve performance by integrating tightly with the netwstack.
However, we decided to implement our initial prototype atrus
level to provide portability and simplify deployment. Givehe
wide array of operating systems used by mobile computerseaihd
phones, a user-level implementation is much easier to paretv
platforms. Further, many popular mobile platforms do ndoval
kernel modifications at all. Even with a user-level implemagion,

our prototype performs well, as shown in Section 7. Our imple

mentation consists of a connection scout daemon that runiseon
mobile client, plus a library implementing the API.

5.1 Connection scout

The connection scout is a stand-alone user-level procdgshw
we have adapted from the implementation of Virgil [30]. Itrés
sponsible for discovering and evaluating the performarfcthe
networking options available at any given time. For eaclinefrho-
bile computer’s wireless network interfaces, the conmectcout

periodically attempts to establish network connectionsfterAa
connection is established, the scout measures the thratgimol
latency of the connection through active probing. The raditket
library queries network availability and performance diaten the
scout using a pipe.

We envision that the connection scout could eventuallyrbaye
a lower layer that allows a mobile computer to simultanepush-
nect to multiple access points via a single physical interfd, 31]

by having the lower layer expose each access point as a separa

virtual interface.

5.2 Library

The Intentional Networking library exports the interface-d
scribed in Section 4.6. It is responsible for mapping IROB&t
terfaces based on their associated labels. For each mukes the
library dynamically creates separate TCP sockets for agterface
over which it decides to send data. A multi-socket connegtier-
sists until no TCP connection can be maintained using anyarkt
interface (for example, if the mobile computer moves outaofge
of a WiFi access point and no other network options are avigja
or the multi-socket is closed.

We chose to use TCP primarily for simplicity. Since we are not
designing a new over-the-wire protocol, TCP’s reliabilityecha-
nisms limit the amount of effort we must spend implementing o
dered delivery of bytes within an IROB or retransmission ytiels
lost due to congestion in the network. For the purposes opoay
totype and evaluation, we have not found TCP to be a signtfican
source of overhead, but we imagine that a more highly tungdeim
mentation of Intentional Networking would integrate maghtly
with the transport layer for optimal performance.

When an initial connection is established over the first TCP

socket, a mobile client sends its peer data that includesvas-
able IP addresses and the estimated bandwidth and lateresdo
one. It piggybacks updates to this information on Interaldset-
working headers, as described below. With this informatether

peer may establish a new TCP connection when it expects that a

new connection would be best suited for data with a specitfiella

The library maps labels to TCP connections using active ase p
sive estimates of network bandwidth and latency. The cdiorec
scout provides an initial active measurement of connedajicality
when a new network option is discovered. As the library sefada
over the connection, it measures the response time forithgV
transmissions to generate passive measurements. Thectionne
scout provides periodic active measurements that are osessess
quality during periods where no data are transmitted andigas
measurements are unavailable. Active and passive measoigm
are combined using a flip-flop filter [19] to derive a runningi-es
mate of the current connection quality.

The library uses the following strategy to map labels to TGR-c

nections. Foreground data is given the highest priorit BR with
the {foreground, small} label are sent over the lowest latency
TCP connection. IROBs with théforeground, large} label
are sent over the highest bandwidth connection. These méyebe
same connection (e.g., if there is only one interface thaeotly
offers connectivity). The actual physical interface usedd spe-
cific label may change over time as estimates of link charisties
vary. Background data is given lower priority than foregndulata.

Background IROBs are striped over all networks that are net ¢
rently sending foreground data. Large, background IROB$&r-
ken into smaller chunks, each of which may be sent over a dif-
ferent network. Our decision to stripe background, but rmoef
ground, IROBs is driven by the different goals of the two lab&
foreground label demands low response time; unfortunasédip-
ing can increase the latency for the last packet to arrivessmthe
networking layer correctly predicts instantaneous lagefioc each
link. In contrast, the background label specifies data thatait
latency-sensitive; thus, a striping strategy that maxasithe uti-
lization of each link is ideal.

The library maintains a collection of IROBs that have beeax cr

priority messages (e.g., foreground requests). If theatipwere
to send a large amount of background data, it might unnedlyssa
delay the foreground data. While a kernel implementationlato
prioritize one over another at the protocol level, a useelém-
plementation must use other methods. We have chosen to adapt
the anticipatory schedulinglgorithm [16] to solve this dilemma.
Since high-priority traffic is likely to exhibit temporal dality, we
bound the amount of data buffered in the kernel by a lowenrjtyi
IROB to no more than the amount of data that can be sent within
50ms if a high-priority IROB has recently been sent by the ap-
plication. This bound is increased up to a maximum of 1 second
as long as no further high-priority IROBs are observed. éip8-
tory scheduling therefore optimizes for low latency foréground
IROBs during periods when many such IROBs are sent, and for
high throughput for periods with few foreground IROBs.

The library that receives data guarantees that bytes aireokd
to the application in a manner that obeys the mutual exatuaial
ordering constraints specified by the sender. Once at |eashyte
from an IROB has been received by an application, no othersbyt
from another IROB are delivered until all bytes from the flROB

ated by the application. Each IROB contains data sent by the have been delivered. For this reason, the library does Hatede

application but not yet acknowledged by the peer library lo& t
other side of the multi-socket connection. This means thertet
is some double-buffering with data contained in the kernéPT
socket buffer; this double-buffering is one performandifamst of
a user-level implementation.

Each label has a linked list that indexes all IROBs with thael
in FIFO order. Each TCP connection has a list of the labelsitha
currently is eligible to send; for instance, the lowest tate TCP
connection may send either background or foreground data. F
each connection, the library sorts the labels in order ofgpesice,
i.e., with foreground labels preferred over backgroundsoighen
the network is able to send data, the library pulls data from t
first IROB on the list associated with the label with highesop
ity. If no such IROB exists, it moves to the label with nextlnegt
priority, and so on. The library encapsulates the IROB dath w
a 32-byte Intentional-Networking-specific header thatudes the
IROB identifier and its label, followed by the IROB’s ordeginon-
straints. Additional information may be piggybacked in teader,
such as current estimates of network bandwidth and latefg.
library is not constrained to send all of an IROB’s bytes oaer
connection at once; it may decide to break an IROB into smalle
chunks, each of which is sent with an individual header. As an
example, this allows the library to start sending IROB datfote
the application has callegs_end_irob to indicate the end of the
IROB. IROB chunks sent over multiple TCP connections are re-
assembled by the receiving library so that the bytes of eREOBI
are delivered atomically and in order.

The receiving library acknowledges each IROB. The acknowl-
edgment is not constrained to travel over the same netwogk ov
which the chunk was received. This can be useful if, for eXammp
TCP connection becomes unavailable after data has beemagce
but before the acknowledgment is sent. For efficiency, askno

bytes from a low-priority IROB until it has received all oibytes.
Further, the library buffers an IROB until its ordering ctnagnts

are satisfied. For instance, if IROB 2 depends on IROB 1, but is
received first (because the two IROBs were transmitted aiffer-d

ent networks), the library buffers IROB 2 until after IROB &sh
been received by the application. If two IROBs are eligilnédée
received, the library delivers the higher-priority one ffifs.g., a
foreground IROB will be received by the application befoteak-
ground one). Within a label type, FIFO ordering is used tadkec
which IROB to deliver.

If a TCP connection fails while IROBs are being transmitted,
any remaining data for those IROBs will be sent over the nedtm
appropriate connection. The library masks transient diseotions
unless all TCP connections fail simultaneously.

When multiple Intentional Networking applications exexabn-
currently, the activities of all processes are coordingteadugh
shared memory variables and synchronization. We assunte tha
the links closest to the mobile computer are the bottlenack]
that most of these are shared across all paths of interesreTh
fore, each library instance updates a shared variable icimjethe
amount of buffered but unsent data on each network that may se
foreground data. The total amount of such data across alegees
is not allowed to exceed the limit described above for thécant
ipatory scheduling algorithm, guaranteeing good foregtbper-
formance. If an application not modified to use Intentionait-N
working executes concurrently with one that does use |iteat
Networking, the applications use separate connectionglanbt
coordinate with each other. The Intentional Networking leap
tion will adjust its estimates of network quality based orsgze
observations during its execution, and hence will accoantte
competing traffic in its decisions.

The Intentional Networking library handles connectionsizen

edgments are piggybacked on outgoing message headers #-a me two mobile computers with multiple interfaces by potergias-
sage is queued when the acknowledgments are generatede Whil tablishing a connection per interface-pair. We do not dbsdhis

Intentional Networking generally relies on the underlyinGP ac-
knowledgments and retransmissions to provide reliabsityne ad-
ditional work is required when a TCP connection breaks. lchsu
instances, the sending library polls the receiving librawvgr a dif-
ferent TCP connection to learn the state of any unacknowiédg
IROBs that were in flight when the connection was broken.

One challenge is that lower-priority messages (e.g., hackgl

requests) may be sent over the same the same network as-highe

scenario further as our applications to date have all iredbleom-
munication between a mobile client and a single-homed serve

6. APPLICATIONS

We have modified three applications to use Intentional Nekwo
ing: BlueFsS, a distributed file system for mobile clientsumter-
bird, the Mozilla e-mail and news client; and a vehicularseg

oo)
application of our own creation.

6.1 BlueFS

BlueFS [32] is an open-source, server-based distributedyi-
tem with support for both traditional mobile computers sasHap-
tops and consumer devices such as cell phones [36]. A BlueFS
client interacts with a remote server through remote pracedall,
augmented with bulk-transfer capabilities. BlueFS intseparts
of its design from previous mobile computing file systemshsuc
as Coda [20]. BlueFS clients fetch file and directory informa
tion on demand from a remote file server. Files are cached lo-
cally on the client. Modifications to file system data are prop
gated asynchronously to the remote server in the backgraand
the same manner as Coda’s weakly-connected mode [28].t€lien
also prefetch data from the server into their caches to ingper-
formance and support disconnected operation.

We adapted BlueFsS to use Intentional Networking by modgyin
its RPC stub generator to take three optional argumentsntan-
tional Networking label, ordering constraints, and a thurikhe

each request/response pair, making it trivial to match estpuand
responses. Out of 2951 lines of proxy code, we added or chiange
124 lines to support Intentional Networking.

6.3 Vehicular participatory sensing

Finally, we created a new application targeted at parttoiya
sensing for corporate vehicle fleets. This application iseblaon
specifications for a research/teaching platform develdpeéord
Motor Company. The application continuously collects dadan
a vehicle’s internal networks and sensors at a data ratebap
imately 25KB/s. Given ample network bandwidth, the raw data
are sent to a cloud server, where they are stored. Raw datiaecan
used for suggesting preventative maintenance, route @gattion,
improving fuel economy, and other participatory sensingsus

Since automotive hardware must last a minimum of 10 years and
cost reduction is key to profits, the vehicle is expected teHian-
ited storage and computational resources. Therefore, edw id

RPC package uses one socket to connect a client and server; wélropped if sufficient network resources are not availabtesiosmit

changed this to be a multi-socket. We also modified the RP&-pac

it immediately. In addition to the raw data, a short 4 KB summa

age to create a new IROB for each RPC request and response mesQf the data is included. By default, metadata summaries eme s

sage with the label, ordering constraints, and thunk sgetify the
BlueFS client.

We labeled RPCs that are used to prefetch data and
asynchronously write modifications back to the server as
{background, large}. Other RPCs which fetch data on-demand
from the server were labeled &sreground; the vast majority of
these aremall since BlueFS fetches data on a per-file-block basis.
While itis true that some demand fetches may be from apjdicst
that are not interactive, the Posix APl is insufficient toregs this
to file systems. Therefore, the conservative approach afitrg all
such requests @ reground seemed best.

Since the file server must see modifications in order, we used
Intentional Networking ordering constraints to specifattleach
file modification IROB depends on the previous one of that type
(e.g., all such IROBs are delivered sequentially with respzone
another). However, no constraints are expressed with cespe
IROBs of other types, so, for example, the library may repate
on-demand fetch IROB ahead of a modification IROB.

The server RPC library responds to each RPC with the same la-
bel used to send the original request. Since the RPC libieegdy
uses a unique identifier for each RPC, matching requestseand r
sponses was trivial.

In total, we added or modified 400 lines of code in the RPC Ii-
brary to support Intentional Networking, as well as 134 diraf
code in BlueFS. For comparison, the original code base hes ov
44,000 lines of code.

6.2 Moazilla Thunderbird

We also used Intentional Networking to improve the intevact

performance of Thunderbird [27], Mozilla’s mail and newgeat.

For simplicity, we used an IMAP proxy to intercept traffic tveen
Thunderbird and an IMAP server. The proxy running on the Heobi
computer prefetches e-mail contents and headers from tiAd?IM
server and stores them on the client’s local disk. We repldabe
proxy’s outgoing connection with a multi-socket and lalletee
IMAP messages. Prefetch requests and responses are laseled
background, while on-demand fetches triggered by the user via
the Thunderbird GUI are labeled @isreground. Requests are all
labeled asmall, while responses are labeledsas11 or large,
depending on their actual size. Each response message tirom t
IMAP server is given the samgackground or foreground des-
ignation as the request that generated the message. Likeavie
ous application, the IMAP protocol includes a unique idétifor

every second, though if bandwidth is insufficient, sumnsdee
generated over longer time periods, e.g., the last 10 secofid
nally, the vehicle also transmits urgent updates when ibenters
anomalous conditions, such as information from the traction-
trol system that indicates slippery road conditions or suddrak-
ing. These updates can be used to warn other vehicles ofuttiffic
driving situations such as ice, accidents, or unexpectdtiar

The Intentional Networking version of this application ééd
metadata summaries ddackground, small} IROBs and raw
data messages @background, large} IROBs. Urgent updates
are{foreground, small} IROBs. We use ordering constraints
to ensure that each raw data IROB is received after the netada
message that summarizes it. The application uses the thterk i
face to receive a callback if a background IROB cannot be imme
diately sent. If the callback is not received before the maxtdata
message is collected, the previous raw data message isettopp
and the metadata summary is updated to average values @ver th
current time period and all previous ones since the last datta
summary was sent.

We also created an additional version of the applicationdbas
not use Intentional Networking. This version usefect to de-
termine when the socket buffer is full. Like the Intentiomet-
working version, this version omits sending raw data andre&gg
gates metadata when it is unable to transmit for more tharta se
ond. Our vehicular sensing application has 2080 lines oéct'de
added or changed 186 lines to support Intentional Netwgrkin

7. EVALUATION

We evaluated Intentional Networking by measuring how much
it improves network performance for our three applicatio@ur
evaluation uses two different types of network connegtisitenar-
ios: synthetic network conditions that are used as microlerarks
and traces of actual network connectivity collected fronehigular
testbed. In the latter case, the use of traces provides iexpetal
repeatability and allows a careful comparison among sirase

7.1 Experimental Setup

7.1.1 Testbed

We ran all experiments on a testbed in which the client coemput
is a Dell Precision 350 desktop with a 3.06 GHz Pentium 4 goce
sorand 1 GB DRAM, running a Linux 2.6.22.14 kernel. All ses/e
run on a Dell Optiplex GX270 desktop with a 2.8 GHz Pentium 4

Scenario Network Bandwidth RTT Connectivity
Type (Mbps) (ms)
Crowded hotspof Low latency 0.6 20 Continuoug
High bandwidth 2.0 400 Continuous
Intermittent Wide-area 0.3 400 Continuous
WiFi hotspots 3.0 60 Intermitten

Table 3: Synthetic network scenarios used in the evaluation

1500__ O Best b/w

5000 5000
@ Best lat 1
12 hagregategoo N 400031 4000
g 1000-|™ Int. n/w |
2] 200 L[N 000N 3000
q) | -
[0004 N 2000
F 1 200
] 10004\ 1000
0 0 0 0
Hotspot Intermittent Tracel Trace 2

Figure 1: Interactive latency for BlueFS

1500__ O Best b/w

000 5000
@ Best lat]
12 Aogregategno [\ 000 4000
g 1000-|™ Int. n/w]
8] 200 [N Jpooo 3000
q) | -
[000 2000
F 1 200
] 1000 1000
0 0l 0 0
Hotspot Intermittent Trace 1 Trace 2

Figure2: Background transfer time for BlueFS

processor and 1 GB DRAM, running a Linux 2.6.18 kernel. These tion of time between APs has a mean of 32 seconds and a median

computers are connected via local 100 Mbps Ethernet coionact
We emulate wireless network conditions by inserting delasiag
the netem [22] network emulator and throttling throughpsiing
the Linux Advanced Routing and Traffic Control tools [21].

For Intentional Networking experiments, we modified thewati

of 126 seconds. Our traces show several instances in whi€fh Wi
dominates 3G. However, the traces indicate that this is @lsim
fied view: 3G may also dominate WiFi in many instances; one may
offer better uplink bandwidth and worse downlink bandwijditc.

and server component of each application to use our APl as de- 7.1.3 Trace-driven evaluation

scribed in the previous section and linked each with thentideal
Networking library. We also ran the connection scout on tient
computer. For other experiments, the applications are wiified.
All reported values are the mean of 5 trials; graph error lshev
95% confidence intervals.

7.1.2 Synthetic Microbenchmarks

To better understand the behavior of Intentional Netwaykime
created synthetic network traces that emulate the two nktaee-
narios shown in Table 3. These synthetic traces are intermled
help us understand our system’s behavior in controlled aen
rather than precisely emulate actual network behavior. flise
scenario replicates the network conditions that would le® 4%/ a
user with a high-bandwidth 3G network card sitting at a cred«d
WiFi hotspot. The 3G network offers higher bandwidth thaa th
crowded AP, but it also inflicts significantly higher latermy net-
work packets. Thus, each network is superior for differgmpies
of traffic. Empirically, we observed several instances aftssce-
narios in the network traces we collected, as describedeméxt
section.

The second scenario emulates a vehicular setting in whigv-a |
bandwidth, high-latency cellular network is continuouaWilable.
Opportunistic WiFi connections that offer better bandvieihd la-
tency are intermittently available. We use empirical disttions
from the Cabernet project [12] to model the availability of AV
access points. The distribution of access point encouti@ssa

While the microbenchmarks above help us understand the be-
havior of our system, we were curious to see how well it would
perform in actual vehicular networking conditions. To gexte re-
peatable experiments, we used a two-part process in whidhiste
drove a vehicle with WiFi and Sprint 3G network interfacese W
continuously measured the downlink and uplink bandwidith lan
tency available through each network interface througivagtrob-
ing to a server at the University of Michigan. We also notecewh
each type of network was unavailable. The WiFi trace inchuatdy
those public APs to which we could associate and establishem
tions. We collected the traces in Ann Arbor, Ml and Ypsilaii
at different times of the day. Trace 1 offers better 3G penfamce
overall but encounters fewer public APs. Its median 3G badtw
is 382 Kbps downlink and 57 Kbps uplink, with maximum band-
width of 1.3 Mbps downlink and 78 Kbps uplink. Trace 2 has more
WiFi access but poorer 3G performance. Its median 3G baritdwid
is 368 Kbps downlink and 40Kbps uplink, with maximum band-
width of 1.2 Mbps downlink and 74 Kbps uplink. Trace 1 has WiFi
coverage only 7% of the time, with a median session lengthlof 1
seconds; the longest session was 72 seconds. Trace 2 hasowiFi
erage 27% of the time, with a median session length of 7 sagond
the longest session was 131 seconds. In both traces, tleepear
riods where each type of network dominates the other, andevhe
each type of network has better bandwidth but worse latelmay t
the other. Thus, the network conditions are much more viriab
than in either of our microbenchmarks. These traces will laelen

median of 4 seconds, a mean of 10 seconds, a 99th percentile ofavailable on our project website and on Dartmouth’s CRAWDAD

250 seconds, and standard deviation of 0.4 seconds. Thibualist

archive.

@ Best b/w] 60
40 4@ Best lat ~ 50
O Aggregate] 40 1
@ | Int. n/w .
S 30 15] 404
g] 30
~ 20 10+ i
(4] 4
£] 20
= . 1 20
10 JIN] 10]
0 0- I 0 0
Hotspot Intermittent Trace 1 Trace 2

Figure 3: Average interactive delay for Thunderbird

In the second step, we used the traces to drive the emulator in Such

our testbed. Our traces lasted 138 and 36 minutes, resplgctiv
Because our experiments run for different durations, wehesérst
portion of each trace for shorter experiments and loop theetfor
longer ones.

We chose to use traces rather than measure applicationrperfo
mance directly from the vehicle platform to provide repééta
conditions for different network management scenariosanging
traffic conditions and external load on networks make it \aiffj-
cult to achieve identical connectivity, even over multipteversals
of the same route. This variability would likely preclude aning-
ful comparisons across different trials.

7.1.4 Comparison strategies

For each application, we compare Intentional Networkinthwi
three strategies. The first two strategies use only a singfl@ark
at a time but migrate connections to always use the best rietwo
according to a specific criteria. The first of these strategieays
uses the network with the lowest round-trip time, while theand
uses the network with the best bandwidth. We idealize a zesb-
migration by emulating a single virtual network connectithat
always has the bandwidth and latency of the best currentanktw
according to the selection criteria. For example, to createtual
“best-latency” trace with a single network, we determinectiier
3G or WiFi offered the lowest latency for the first second o th
original trace, then use the recorded characteristicsaifribtwork
for the first second of our new trace. We repeat the process for
each second. Thus, these strategies show the maximum kiaefit
could be achieved by a migration strategy if an oracle clotise
best current connection and there is no migration cost.

We also compare Intentional Networking with an idealized ve
sion of an aggregation protocol, such as MultiNet or Fat\ihBt
multiplexes traffic over all available networks. We idealiag-
gregation by emulating a single virtual network connectibat
has bandwidth equal to the sum of the bandwidths of all né¢svor
and latency equal to the minimum of the latencies of all neltao
This virtualized network is ideal in the sense that it offeetter
connectivity than any protocol that aggregates the indizichet-
works could actually achieve. It therefore offers an upprrral on
application-oblivious aggregation performance for easgnario.

7.2 Results
7.2.1 BlueFS

To evaluate BlueFS, we run a software development workload
that rebuilds the lighttpd (version 1.4.25) Web server seuree.

@ Best b/w]
@ Best lat A 00
30044 Aggregateloo_ 00
@ | Int. n/w i
8 _
g 200 TN 00
g 50
~ 100 1 100 00
0 0 0 0
Hotspot Intermittent Trace 1 Trace 2

Figure 4: Background transfer timefor Thunderbird

“Andrew-style” benchmarks have long been used to test fi
system performance [14]. Our particular benchmark delatlesh-
ject files from the build directory and then ruesnfigure and
make to build lighttpd. The benchmark begins with a cold client
file cache, so all files are fetched from the server. We repat t
total time taken to execute the benchmark (i.e., the inteaper-
formance), as well as the total time to finish propagatingatisito
the server in the background.

Figure 1 shows the interactive latency for BlueFS (the time t
complete the software development benchmark). For thepbbts
scenario, the best bandwidth strategy always uses the 3@ret
The best latency strategy is an improvement because thdomork
is dominated by small fetches of 4 KB blocks. The idealized ag
gregation strategy works very well in this scenario because
given maximum benefit from the diverse latency and bandwidth
of each network. Yet, Intentional Networking still realkza 14%
speedup compared to aggregation by prioritizing foregdoowver
background traffic. Intentional Networking improves irstetive
latency by 3x compared to the best latency strategy and bypdx c
pared to the best bandwidth strategy.

To verify that Intentional Networking does not unduly penal
ize background traffic, we also measured the total time taHini
sending all background updates to the server, as shown in Fig
ure 2. Interestingly, Intentional Networking transfersadta 9%
faster than the aggregation strategy in the hotspot seenariirst,
this seems anomalous because our idealized aggregataiagstr
should make maximum possible use of the networks. However,
because the benchmark includes computation that deperfidsesn
ground transfers, compute episodes start earlier usirentional
Networking. This means that background data is generatekeso
in the benchmark. Thus, Intentional Networking is able te tise
uplink bandwidth earlier in periods where the aggregatimategy
has no data to send. Where data dependencies exist, Imzntio
Networking can use the network more efficiently than everden i
alized aggregation strategy that is unaware of applicatitent.

In the intermittent scenario, WiFi dominates 3G when it igiav
able. Thus, the best bandwidth and best latency strategis b
choose WiFi when available. The aggregation strategy dgerv
small additional benefit from also using 3G during thesequkwi
Intentional Networking, however, reduces interactiveefetty by
40%. The benefit compared to aggregation is larger in this sce
nario because aggregation derives less benefit from itdizdea
use of two networks to offset Intentional Networking’s béirfeom
understanding application intent. Intentional Netwogkntotal
transfer time for all data is 1% better than the other stiateg

The performance of Intentional Networking for latency-siéne

1.5-]@ Best biw] 104 10+

“]m Bestlat 1.0 1 1

1@ Aggregate] 8- 8

) 1w Int. niw 1 i i

§ 1.0] 6 - 6

R 0-57 4 4

= 0.5—_] 4 4

i] 2 2

0.0- 0.0 0- 0-
Hotspot Intermittent Trace 1 Trace 2

Figure5: Urgent update latency for Vehicular Sensing

data is even better for the measured vehicular scenariososéc
the two traces, Intentional Networking improves intenaetie-
sponse time by 5-8x compared to aggregation, while inangasi
total background transfer time by only 1-7%. Compared to the
best-bandwidth and best-latency strategies, Intentidealorking
improves interactive latency by 7-8x and background tertahe

by 5-17%. Despite the increased variability of network gualn-
tentional Networking identifies and uses the best networleéeh
type of traffic and thereby maximize benefit to the user.

7.2.2 Thunderbird

In our Thunderbird benchmark, a user reads e-mail afteriagher
of disconnection. The benchmark first fetches the e-mailéessof
100 messages, then downloads in the background the e-msil me
sages (with attachments), which range in size from 50 B td<X%.6
While the caching proxy is downloading these messages,dée u
selects 5 messages to read immediately based on the he¥ders.
report the average interactive delay to fetch the on-densamehils,
as well as the time to fetch all e-mails in the background.

Results for the Thunderbird e-mail benchmark are showngn Fi
ures 3 and 4. In contrast to the previous benchmark, the togra
strategy that maximizes bandwidth is superior to the onerttivai-
mizes latency because transfer times are dominated byedémeye
e-mails. Intentional Networking improves interactiveeiaty com-
pared to aggregation by 5x in the hotspot scenario and by &ein
intermittent scenario. By reordering messages based olicapp
tion semantics, Intentional Networking is able to deliveparior
response time. Total background transfer time is 18% loirgtre
hotspot scenario, but 1% longer in the intermittent scenaRe-
sults compared to the migration strategies are even buefitér|n-
tentional Networking fetching the on-demand e-mails 8—{23xer,
while also improving total background transfers by up to 3x.

For the two vehicular measurements, Intentional Netwaykin-
proves interactive latency by 7—-13x compared to the othatest
gies. The time to transfer all e-mails is within 1-3% of thedtized
aggregation strategy and superior to both migration sirese

7.2.3 \Vehicular sensing

In our vehicular sensing benchmark, the vehicle uploadsiata
to a server when network bandwidth is available, as destribe
Section 6.3. Our benchmark lasts for fifteen minutes. Dutivag
time, we have three episodes of urgent data transmissianse S
urgent messages are very often closely correlated in tireesend
five messages in a period of seven seconds during each epislede
report the average response time for urgent events andftéieé

60 @ Best biw] i |
@ Best lat]
& 1= Aggregate] 6 6 —
;ﬁ, 40-{™ Int. n/w 15 l i
5] 4 4
2 10] |
8 20]
£ 5 _: 2 2
0- 0- 0 0
Hotspot Intermittent Trace 1 Trace 2

Figure 6: Background throughput for Vehicular Sensing

throughput of bulk sensor data, calculated over the enfirminute
run time of the benchmark.

Figures 5 and 6 show results for the vehicular sensing agplic
tion. In the hotspot scenario, the aggregate bandwidthficiunt
to prevent background data from interfering with urgent saggs.
Thus, both Intentional Networking and the aggregationtsgna
perform very well. The approximately 30 ms average laterary f
urgent updates is equivalent within experimental errortfi@r two
strategies. The aggregation strategy achieves the maxioaok-
ground data rate of 29 KB/s (a 4 KB summary and 25 KB of raw
data per second), and Intentional Networking comes withii§«0
of this rate. Intentional Networking sends foreground dater 4x
faster than the best-latency migration strategy.

In the intermittent scenario, Intentional Networking sendgent
events 41% faster than the aggregation strategy and alsevash
25% greater bulk data throughput. The throughput improveéme
comes from the use of thunks, which allow the Intentional-Net
working version to avoid polling and better schedule baokgd
transmissions.

For the two vehicular traces, Intentional Networking imye
urgent event response time by 2-5x compared to the othaestra
gies. At the same time, Intentional Networking improvesktsén-
sor data throughput by 1-6% compared to the idealized aggreg
tion strategy and by up to 29% compared to the idealized ridgra
strategies.

7.2.4 Concurrent applications

Finally, we examined the effect of running multiple Intemtal
Networking applications concurrently by splitting the i@Har
sensing application into two separate processes. The foseps
sends only the urgent messages; the second process sentiseonl
raw sensor data. Figures 7 and 8 show results with two presess
including the two-process version of the application facteaf the
idealized strategies. The behavior of Intentional Netwagkwith
two processes is very similar to that with one process, shgihiat
the cost of using shared memory to coordinate across meijig-
cesses is not significant. The application-oblivious sgits see
some benefits from multiple processes in the microbenchiswek
narios because the urgent updates and sensor data transs&ae
now concurrent, yet Intentional Networking performancemains
comparable to or better than the ideal strategies in allaziesn

8. FUTURE WORK

Applications must currently be modified to use IntentionatN
working. As discussed in Section 6, these modifications mate
been onerous. Nevertheless, to broaden the applicabilityten-

1.5-]@ Best biw] 104 10+

“]m Bestlat 1.0 1 1

1@ Aggregate] 8- 8

) 1w Int. niw 1 i i

§ 1.0] 6 - 6

R 0-57 4 4

= 0.5—_] 4 4

i] 2 2

0.0- 0.0- 0- 0

Hotspot Intermittent Trace 1 Trace 2

Figure 7: Urgent updatelatency, multi-app Vehicular Sensing

tional Networking, our future plans include providing meacisms
to disclose hints on behalf of unmodified applications.

It may be possible to identify on-demand activity by intgee
ing user actions and correlating them with network usage mafe
even be able to classify opportunistic behavior by obseridhup-
dates that do (or, importantly, do not) happen together With
activity. Alternatively, we are planning to combine stankospec-
tion techniques from the security community [47] with cduszal-
ysis techniques recently used to create high-performales)fs-
tems that provide strong persistence guarantees [33]. sthiesme
tracks user and Ul behavior through the operating systeentid
fying the set of inputs that can possibly have influenced aket
outputs. Of course, this set is possibly too large becausadks
any relationships that might have been causal. We can pharset
via offline analysis, either by observing many executionsiofi-
lar code paths and eliminating candidate causal eventsotiigt
happen some of the time [23] or by using taint checking to [&ofi
causality within a process [29].

Our current implementation also requires that both endsnefta
work connection be modified to use Intentional Networkinchai/
one cannot modify the server, we believe the best solutitmrisn
a proxy in the cloud that converts Intentional Networkingffic
from the client to a single TCP connection to the server. The a
plication client can thus use Intentional Networking to g the
wireless connection, which is where the majority of benebtnf
network diversity is likely to be found.

9. CONCLUSION

Mobile nodes face a changing array of diverse networking op-

tions, each of which may harbor different strengths and weak
nesses. As a result, it is rarely the case that any one netvgork
option is the best choice for all traffic generated by all &gations.
By using the available options judiciously, an applicatinay see
significant improvements in service. Unfortunately, siyngkpos-
ing the lower-level details of available networks, leavawgrything
to the application, is unlikely to gain much traction.

Intentional Networking addresses this impasse. It pravide
simple, declarative interface for application to exprdssintent
behind each network message. The system matches preseftited n
work traffic to the best available interface. If no availabhktwork
is suitable, the traffic is deferred until such a network lmees
available. Deferring some types of traffic but not othersiteto
reordering. Intentional Networking provides mechanismsex-
press mutual exclusion and ordering constraints over tinaffic
to match application constraints. Our results using vehiowire-

60 @ Best biw] i |
@ Best lat]
& 1= Aggregate] 6 6 —
;ﬁ, 40-{™ Int. n/w 15 l i
5] 4 4
2 10] |
8 20]
£ 5 _: 2 2
0- 0- 0 0
Hotspot Intermittent Trace 1 Trace 2

Figure 8: Throughput, multi-app Vehicular Sensing

less measurements show that these strategies improvadtiver
response time from 48% to 13x, while degrading throughputdoy
more than 7%.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Victol; Ba com-
ments that improved this paper. We used David A. Wheeler®SCount

to estimate the lines of code for our implementation. Thiskws is sup-
ported in part by NSF CAREER award CNS-0346686, NSF award-CNS
0509089, and the Ford Motor Company. The views and conclesion-
tained in this document are those of the authors and shoulteninter-
preted as representing the official policies, either exggesr implied, of
NSF, the University of Michigan, Ford, or the U.S. governmen

10. REFERENCES

[1] ANAND, M., NIGHTINGALE, E. B.,AND FLINN, J. Self-tuning
wireless network power managementHroceedings of the 9th
Annual Conference on Mobile Computing and NetworKan
Diego, CA, September 2003), pp. 176-189.

BAHL, P., ADYA, A., PADHYE, J.,AND WOLMAN, A.
Reconsidering wireless systems with multiple radidsmputer
Communication Review 38 (2004), 39-46.

BALASUBRAMANIAN , A., MAHAJAN, R., AND

VENKATARAMANI , A. Augmenting mobile 3G using WiFi. In
Proceedings of the 8th International Conference on Mobyigt&ns,
Applications and Servicggune 2010), pp. 123-136.

Bay area wireless users groufttp://wuw.bawug.org/.
BRUNATO, M., AND SEVERINA, D. WilmaGate: A new open access
gateway for hotspot management.Rroceedings of the 3rd ACM
International Workshop on Wireless Mobile Applicationglan
Services on WLAN Hotspots (WMASHKPIn, Germany, September
2005), pp. 56-64.

CARTER, C., KRAVETS, R.,AND TOURRILHES, J. Contact
networking: a localized mobility system. Proceedings of the 1st
International Conference on Mobile Systems, Applicatamd
ServiceqSan Francisco, CA, May 2003), pp. 145-158.
CHANDRA, R.,AND BAHL, P. MultiNet: Connecting to multiple
IEEE 802.11 networks using a single wireless carPloceedings
of the 23rd Annual Joint Conference of the IEEE Computer and
Communications Societi€¢slong Kong, March 2004), pp. 882-893.
CHEBROLU, K., RAMAN, B., AND RAO, R. R. A network layer
approach to enable TCP over multiple interfad&reless Networks
11, 5 (September 2005), 637—650.

CZERWINSKI, S., ZHAO, B., HODES, T., JOSEPH A., AND KATZ,
R. An architecture for a secure service discovery servite. |
Proceedings of the 5th International Conference on Mobile
Computing and Networkin(Seattle, WA, August 1999), pp. 24-35.
DRAVES, R., ®DHYE, J.,AND ZILL, B. Routing in multi-radio,
multi-hop wireless mesh networks. Rroceedings of the 10th
International Conference on Mobile Computing and Netwagki
(Philadelphia, PA, September 2004), pp. 114-128.

(2]

(3]

(4]
(5]

(6]

(8]

El

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

EFsTATHIOU, E. C.,AND POLYZOS, G. C. A peer-to-peer approach
to wireless LAN roaming. IfProceedings of the 1st ACM
International Workshop on Wireless Mobile Applicationglan
Services on WLAN Hotspots (WMASBan Diego, CA, September
2003), pp. 10-18.

ERIKSSON, J., BALAKRISHNAN, H., AND MADDEN, S. Cabernet:
Vehicular content delivery using WiFi. IRroceedings of the 14th
International Conference on Mobile Computing and Netwuagki
(September 2008), pp. 199-210.

FRIDAY, A., DAVIES, N., WALLBANK , N., CATTERALL, E.,AND
PINK, S. Supporting service discovery, querying and interaciio
ubiquitous computing environmentlireless Networks 1®
(November 2004), 631-641.

HOWARD, J. H., KAZAR, M. L., MENEES S. G., NCHOLS,

D. A., SATYANARAYANAN , M., SIDEBOTHAM, R. N.,AND WEST,
M. J. Scale and performance in a distributed file syst@GM
Transactions on Computer Systemd §February 1988), 51-81.
HSIEH, H. Y., AND SIVAKUMAR , R. A transport layer approach for
achieving aggregate bandwidths on multi-homed mobileshast
Proceedings of the 8th International Conference on Mobile
Computing and NetworkinfAtlanta, GA, September 2002),

pp. 83-94.

IYER, S.,AND DRUSCHEL, P. Anticipatory scheduling: A disk
scheduling framework to overcome deceptive idleness in
synchronous 1/O. IfProceedings of the 18th ACM Symposium on
Operating Systems Principl¢Banff, Canada, October 2001),

pp. 117-130.

JOHANSSON P., KAPOOR R., KAZANTZIDIS, M., AND GERLA,
M. Personal area networks: Bluetooth or IEEE 802.[kt@rnational
Journal of Wireless Information Networks 3 (April 2002), 89—-103.
KANDULA, S., LIN, K. C.-J., BADIRKHANLI, T., AND KATABI,

D. FatVAP: Aggregating AP backhaul capacity to maximize
throughput. InProceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementgi8an Francisco, CA,
April 2008), pp. 89-103.

Kim, M., AND NOBLE, B. D. Mobile network estimation. In
Proceedings of the 7th International Conference on Mobile
Computing and Networkin@uly 2001), pp. 298-309.

KISTLER, J. J. AND SATYANARAYANAN , M. Disconnected
operation in the Coda file syste®iCM Transactions on Computer
Systems 1Q (February 1992).

LINUX ADVANCED ROUTING AND TRAFFIC CONTROL.
http://lartc.org/.

THE LINUX FOUNDATION. netem

http://www.linuxfoundation.org/collaborate/workgnas/networking/netem.

Lu,S., RRK, S., HU, C., MA, X., JANG, W., LI, Z., POPA,

R. A.,AND ZHOU, Y. MUVI: Automatically inferring
multi-variable access correlations and detecting relagdantic and
concurrency bugs. IRroceedings of the 21st ACM Symposium on
Operating Systems Principl¢Stevenson, WA, October 2007).
MAGALHAES, L., AND KRAVETS, R. Transport level mechanisms
for bandwidth aggregation on mobile hodSEE International
Conference on Network Protocd®001).

MATSUNAGA, Y., MERINO, A. S., SJzUKI, T.,AND KATZ, R.
Secure authentication system for public WLAN roaming. In
Proceedings of the 1st ACM International Workshop on Wsle
Mobile Applications and Services on WLAN Hotspots (WMASH)
(San Diego, CA, 2003), pp. 113-121.

Miu, A. K., AND BAHL, P. Dynamic host configuration for
managing mobility between public and private networks. In
Proceedings of the 3rd USENIX Symposium on Internet Techies!
and Systems (USIT83an Francisco, CA, March 2001),

pp. 147-158.

MOZILLA THUNDERBIRD.
http://www.mozillamessaging.com/en-US/thunderbird/
MUMMERT, L., EBLING, M., AND SATYANARAYANAN , M.
Exploiting weak connectivity in mobile file access.Rnoceedings of
the 15th ACM Symposium on Operating Systems Princ{lepper
Mountain, CO, Dec. 1995).

NEWSOME, J.,AND SONG, D. Dynamic taint analysis: Automatic
detection, analysis, and signature generation of explizitles on

[30]

(31]

[32]

(33]

[34]

[35]
[36]

[37]
(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

commaodity software. Ifin Proceedings of the 12th Network and
Distributed Systems Security Sympos{f@bruary 2005).
NICHOLSON, A. J., GHAWATHE, Y., CHEN, M. Y., NOBLE, B. D.,
AND WETHERALL, D. Improved access point selection. In
Proceedings of the 4th International Conference on Mobyigt&ns,
Applications and Servicg&Jppsala, Sweden, 2006), pp. 233-245.
NICHOLSON, A. J., WOLCHOK, S.,AND NOBLE, B. D. Juggler:
Virtual networks for fun and profitEEE Transactions on Mobile
Computing 91 (January 2010), 31-43.

NIGHTINGALE, E. B.,AND FLINN, J. Energy-efficiency and storage
flexibility in the Blue File System. IiProceedings of the 6th
Symposium on Operating Systems Design and Implemen{&#on
Francisco, CA, December 2004), pp. 363-378.

NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M.,AND
FLINN, J. Rethink the sync. IRroceedings of the 7th Symposium on
Operating Systems Design and Implementa(®eattle, WA,

October 2006), pp. 1-14.

NOBLE, B. D., SATYANARAYANAN , M., NARAYANAN, D.,

TILTON, J. E., RINN, J.,AND WALKER, K. R. Agile
application-aware adaptation for mobility. Rroceedings of the 16th
ACM Symposium on Operating Systems Princifzsnt-Malo,
France, October 1997), pp. 276-287.
NYCWirelesshttp://nycwireless.net/.

PEEK, D., AND FLINN, J. EnsemBlue: Integrating distributed
storage and consumer electronicsPimceedings of the 7th
Symposium on Operating Systems Design and Implementation
(Seattle, WA, November 2006), pp. 219-232.

PERKINS, C. IP mobility support for IPv4. RFC 3344, August 2002.
Popra, O. Multipath TCP on mobile phones. Master’s thesis,
Computer Laboratory, University of Cambridge, 2010.
SAKAKIBARA , H., SAITO, M., AND TOKUDA, H. Design and
implementation of a socket-level bandwidth aggregatiochmaism
for wireless networks. IWICON '06: Proceedings of the 2nd Annual
International Workshop on Wireless Interr{&oston, MA, 2006).
SALEM, N. B., HuBAuUX, J.-P. AND JAKOBSSON, M.
Reputation-Based Wi-Fi Deployment Protocols and Security
Analysis. InProceedings of the 2nd ACM International Workshop on
Wireless Mobile Applications and Services on WLAN Hotspots
(WMASH)(Philadelphia, PA, October 2004), pp. 29—40.
SATYANARAYANAN , M. Pervasive Computing: Vision and
ChallengeslEEE Personal Communications 8 (August 2001),
10-17.

SeattleWirelessattp://seattlewireless.net/.

SNOEREN, A., BALAKRISHNAN, H., AND KAASHOEK, F.
Reconsidering Internet mobility. IRroceedings of the 8th Workshop
on Hot Topics in Operating Systems (Hot@Sghloss Elmau,
Germany, May 2001), pp. 41-46.

STEMM, M., AND KATZ, R. H. Vertical handoffs in wireless overlay
networks.Mobile Networks and Applications 8 (December 1998),
335-350.

STEWART, R., XIE, Q., MORNEAULT, K., SHARP, C.,
SCHWARZBAUER, H., TAYLOR, T., RYTINA, |., KALLA, M.,
ZHANG, L., AND PAxzoON, V. Stream control transmission protocol.
Tech. rep., IETF, June 2000.

TERRY, D. B. Caching hints in distributed systeniSEE
Transactions on Software Engineering, 13January 1987), 48-54.
WALLACH, D. S., BALFANZ, D., DEAN, D., AND FELTEN, E. W.
Extensible security architectures for JavaPlimceedings of the 16th
ACM Symposium on Operating Systems Princifzsnt-Malo,
France, October 1997).

ZAHARIA, M., AND KESHAV, S. Fast and optimal scheduling over
multiple network interfaces. Tech. Rep. CS-2007-36, Unsitg of
Waterloo, 2007.

ZHANG, M., LAI, J., KRISHNAMURTHY, A., PETERSON L., AND
WANG, R. A transport layer approach for improving end-to-end
performance and robustness using redundant patif&oceedings of
the USENIX Annual Technical Conferern{@oston, MA, 2004).
ZHAO, X., CASTELLUCCIA, C.,AND BAKER, M. Flexible network
support for mobility. InProceedings of the 4th International
Conference on Mobile Computing and Network{pgllas, TX,
October 1998), pp. 145-156.

